a2 United States Patent

US007178081B2

(10) Patent No.: US 7,178,081 B2

Lee et al. 45) Date of Patent: Feb. 13, 2007
(54) SIMPLIFIED MESSAGE-PASSING DECODER (56) References Cited
f?(())RDngSO W-DENSITY PARITY-CHECK U.S. PATENT DOCUMENTS
6,633,856 B2* 10/2003 Richardson et al. .......... 706/15
(75) Tnventors: Sang-Hyun Lee, Busan (KR), Yun-Hee 6,938,196 B2*  8/2005 Rlchmds?n etal. ........ 714/752
. . . 7,013,116 B2* 3/2006 Ashikhmin et al. ......... 455/214
Kim, Daejeon (KR); Kwang-Soon
Kim, Daejeon (KR); Kyung-Hi Chang, FOREIGN PATENT DOCUMENTS
Daejeon (KR) KR 1020020051549 6/2002
KR 1020020072628 9/2002
(73) Assignee: Electronics and Telecommunications WO 01/43292 Al 6/2001
Research Institute (KR) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—QGuy Lamarre
patent is extended or adjusted under 35 Assistant Examiner—Esaw T. Abraham
U.S.C. 154(b) by 489 days. (74) Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
Zafman
(21) Appl. No.: 10/696,897
57 ABSTRACT
(22) Filed: Oct. 29, 2003 Disclosed is an implementation method for simplifying a
. o complicated message-passing function in a decoder for
(65) Prior Publication Data decoding block codes encoded with low-density parity-
US 2004/0123230 Al Jun. 24, 2004 check (LDPC) codes and only using a summator and a
shifter to simplify the hardware structure of the decoder, in
(30) Foreign Application Priority Data which method the input interval of the message-passing
function for binary representation of a message input is
Dec. 24,2002 (KR) .ocveerevenrrececenee 2002-83721 divided and the respective divided intervals are linearized to
allow the calculation of the output of the message-passing
(51) Int. Cl function without using a memory. Based on the fact that the
HO3M 13/00 (2006.01) message-passing function is similar in structure to an expo-
(52) US.CL ...ooveeve. 714/752; 714/801; 714/794, nential function, the linearized intervals are set to make the
375/265;375/341 maximum value expressible in each digit of the binary
(58) Field of Classification Search ............... 714/752,  representation as the boundary of the intervals.
714/801, 794
See application file for complete search history. 10 Claims, 7 Drawing Sheets
3);1 0 3,21 3;30 3}»41 3)42 343 3;50
N 4 . . 7
I e s T A s e R e TR
Information|:  Matrix |; Channel |& LLR Bit Node Parity |.|Information
Source }! Muittiplier i i | Calculator Function | | Checker | Sink
ié Generator | f gfheck Nodei : }
i Matrix ! : Function :
322 Matix il 320 | 344 ! Functo ! 340




US 7,178,081 B2

Sheet 1 of 7

Feb. 13, 2007

U.S. Patent

FIG.1

0
0

0

1

1 0 0 1

0 0

1 0 0

0 0
1
0 0 O

0
0

1

0

1
1

1 0 0
0 0 0

0 0

0

]

1 0

0 0 0 1

1

FIG.2

(1))
£
]
>
b~
| .
©
a

Bit nodes



US 7,178,081 B2

Sheet 2 of 7

Feb. 13, 2007

U.S. Patent

0Z€ || wmew | CCE
i 101e18U8D
}

co_ﬁc:mg_ s> _
_n sidpn iy
jpuueys ' -

ePON Yooy

|

wwarfremactrrmmea.

U | aeoeyD m uojjoung lojeinoen 2302IN0g
uogewsouy ;| Aed 8PON ¥ o717 XIIEN LOBULIOU|
: J
) Joo phiv R bbb .\\h:ﬁ ....... 4 ,ﬂ; ..... q..:w ....... . _\;
0se £evre cre e oce lce oLe

¢OId



U.S. Patent Feb. 13,2007 Sheet 3 of 7 US 7,178,081 B2

FIG.4
LLR(a,) LLR()
AN 7N\
41 =) LIka) 42 —*Q"[ZCD(LLR(a ))}
7 72 R

LIR@,) 413 414 IIR(,) 423 424
~ A

412 422



U.S. Patent Feb. 13,2007 Sheet 4 of 7 US 7,178,081 B2

FIG.S




U.S. Patent Feb. 13,2007 Sheet 5 of 7 US 7,178,081 B2

FIG.6




U.S. Patent Feb. 13,2007 Sheet 6 of 7 US 7,178,081 B2

FIG.7

710
........... Do
720 LI [ [} ]]
|U A VSi\ Y Vi

730

L&
S

FIG.S8




U.S. Patent Feb. 13,2007 Sheet 7 of 7 US 7,178,081 B2

F1G.9




US 7,178,081 B2

1

SIMPLIFIED MESSAGE-PASSING DECODER
FOR LOW-DENSITY PARITY-CHECK
CODES

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority to and the benefit of
Korea Patent Application No. 2002-83721 filed on Dec. 24,
2002 in the Korean Intellectual Property Office, the content
of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

(a) Field of the Invention

The present invention relates to a decoding technology for
channel codes. More particularly, the present invention
relates to a message-passing decoder for LDPC (Low-
Density Parity-Check) codes that receives data encoded with
LDPC codes on a channel, having a consecutive output
values, and decodes the coded data using a message-passing
decoding algorithm.

(b) Description of the Related Art

LDPC codes are linear block codes reported by Gallager
in 1962, and they are defined as a sparse parity-check matrix
of which the elements are mostly “0”. LDPC codes were out
of the public’s mind for a long time due to expense of
implementation, but they were re-discovered by MacKay
and Neal in 1995. In 1998, irregular LDPC codes derived
from generalization of the LDPC codes proposed by Gal-
lager were announced. At the time of the first announcement
of the LDPC codes by Gallager, the probabilistic coding
method for LDPC codes was also made known, through
which method the excellent performance of LDPC codes
was demonstrated. It was also found that LDPC codes have
an improved performance when they are expanded from
binary codes to nonbinary codes. Like Turbo codes, LDPC
codes have a bit error rate (BER) approaching the channel
capacity limit defined by Shannon. The irregular LDPC
codes known to have the greatest performance are suitable
for applications requiring a high-quality transmission envi-
ronment having a considerably low BER, because they need
no more than 0.13 dB in addition to the channel capacitor by
Shannon in order to achieve a BER of 10~° when the block
size is about 10° bits in the additive white Gaussian noise
(AWGN) channel environment.

The basic decoding method for LDPC codes includes a
probabilistic decoding algorithm, unlike the algebraic
decoding algorithm that is the decoding method of the
conventional block codes, and adapts a belief propagation
method based on graph theory and probabilistic prediction
theory. Accordingly, the LDPC decoder calculates, for indi-
vidual bits of the code word received through the channel,
the probability of the corresponding bit being “1” or “0”.
The probabilistic information calculated by the decoder is
specifically called a “message”, and is used in checking
whether or not each parity defined in a parity-check matrix
is satisfied. The message calculated when a specific parity of
the parity-check matrix is satisfied, i.e., when the result of
the parity check is “0”, is specifically called a “parity-check
message”, which specifies the value of each bit of the code
word. The parity-check message for each parity is used in
determining the value of the corresponding bit. The infor-
mation about the bit calculated is called a “bit message”. In
the procedure of repeating the message-passing operation,
information about the bits of each code word is constantly
improved until all the parities of the parity-check matrix are

20

25

30

35

40

45

50

55

60

65

2

satisfied. If the parities of the parity-check matrix are all
satisfied, the decoding of the code word is ended. Typically,
systematic codes are used in a channel environment having
a low signal-to-noise ratio (SNR), so a specific part of the
code word is extracted to reproduce information bits. It is
favorable to convert a probabilistic message to a log likeli-
hood ratio (LLR) message for calculation so as to readily
achieve message propagation decoding of LDPC binary
codes in the AWGN channel environment.

This LLR message decoding method involves a logarithm
function operation in message calculation, and it causes a
problem in regard to implementation of a nonlinear function.
Typically, in calculation of a nonlinear function for an
integrated circuit, a specific value is stored in a read-only
memory (ROM) and the output value of an address related
to the input is read out from the ROM. The use of this
method requires memories of a large capacity and increases
the area cost of the integrated circuit, thereby raising the cost
of implementation. But, reducing the number of bits repre-
senting input and output deteriorates the accuracy of the
message calculation to reduce the entire decoding perfor-
mance and increase the BER.

SUMMARY OF THE INVENTION

It is an advantage of the present invention to implement
calculation of a parity-check message in a decoder for LDPC
codes by applying a linear approximation method to indi-
vidual intervals divided from an input interval without using
a read-only memory (ROM). The parity-check function used
for the calculation of the parity-check message is a mono-
tonically decreasing function that shows a similar decreasing
tendency to an exponential function, so the interval can be
determined in the manner of the exponential function to
drastically reduce approximation errors caused by linear
approximation. For the linear approximation, the slope for
each interval and the function value at the interval boundary
are necessary. A simple multiplier is constructed with a
combination of summators and shifters. Accordingly, the
entire parity-check function can be calculated only with the
operations of summators and shifters. The present invention
proposes a decoder that implements the parity-check func-
tion in a simply way.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate an
embodiment of the invention, and, together with the descrip-
tion, serve to explain the principles of the invention:

FIG. 1 is an illustration of a sparse parity-check matrix
constituting one LDPC code;

FIG. 2 is a Tanner graph representing FIG. 1;

FIG. 3 is an illustration of an encoder and a decoder for
LDPC codes;

FIG. 4 is an illustration of a method for calculating a
message in each node;

FIG. 5 shows a linearization method of a message-passing
function;

FIG. 6 shows a parallel implementation structure of a
message calculator for calculating the linearized message-
passing function as proposed in the present invention;

FIG. 7 shows an implementation structure of the mini-
mum cost of the message calculator for calculating the
linarized message-passing function as proposed in the
present invention;



US 7,178,081 B2

3

FIG. 8 shows a circuit implementing a multiplier for
multiplication of a slope; and

FIG. 9 shows a circuit implementing a summator for
summating the boundary values of the respective intervals.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following detailed description, only the preferred
embodiment of the invention has been shown and described,
simply by way of illustration of the best mode contemplated
by the inventor(s) of carrying out the invention. As will be
realized, the invention is capable of modification in various
obvious respects, all without departing from the invention.
Accordingly, the drawings and description are to be regarded
as illustrative in nature, and not restrictive.

The present invention can be applied to decoding of block
codes encoded using LDPC codes. The block codes are
encoded by way of a sparse parity-check matrix 100
designed to have the least number of elements 110 other than
“0” 120, and a related generator matrix. The coding method
is exactly the same as the coding of general block codes.

In the decoding method of LDPC codes, a Tanner graph
220 is defined from the sparse parity-check matrix 100, and
the message-passing algorithm is applied to the correspond-
ing graph. FIG. 2 shows the Tanner graph for the parity-
check matrix of FIG. 1. The Tanner graph 200 comprises
nodes 210 and 220, and a branch 230. The nodes are divided
into parity-check nodes 210 for a parity-check message, and
bit nodes 220 for a bit message. The number of parity-check
nodes 210 is equal to that of columns in the parity-check
matrix 100. The number of bit nodes 220 is equal to that of
rows in the parity-check matrix 100. The nodes represent the
rows and columns of the matrix in sequence. The branch 230
contains elements having a non-zero value in the parity-
check matrix 100. For example, the leftmost branch of FIG.
2 connecting the first parity-check node to the first bit node
represents the element (1,1) of the parity-check matrix.
Likewise, the branch connecting the first bit node to the
fourth parity-check node represents the element (4,1) of the
party-check matrix. The coding and decoding process is
performed using the above-defined Tanner graph 200. FIG.
3 shows a coder 320 and a decoder 340. The decoder 340
comprises an LLR calculator 341, a bit node function unit
342, a check node function unit 344, and a parity checker
343. Assuming that each bit of a code word passing through
a channel 330 is y, and the probability of the corresponding
bit being “1” is p,, the LLR calculator 341 calculates the
LLR according to the following equation 1.

2 Equation 1
LLR(p:) = —3 i

where o” represents the noise power of the channel. The
noise power of the channel is given as an externally input
parameter.

The message of each node can be determined using the
initial LLR value. The calculation method for the message of
bit nodes and parity-check nodes is illustrated in FIG. 4.
First, a bit node message 414 is calculated using the initial
LLR value given by the equation 1. The bit node function
unit 342 calculates the LLR q; of the message 414 of bit
node 413 corresponding to the j-th parity of the i-th bit
according to the following equation 2.

20

25

30

35

40

45

50

55

60

65

Equation 2
LLR(@gj)« | LLR(y)+LLR(p)

Fecolli]
J

The method of the check node function unit 344 calcu-
lating the LLR r;; of the message 424 of the parity-check
node 423 is given by the following equation 3.

> BLLRGy )
i/ eColj]
P

LLRG) < <I>1[ ] Equation 3

To calculate the parity-check message according to the
equation 3, the mathematical function as defined by the
equation 4 is necessary.

Dx) = —log(tanh(%)) Equation 4

The parity-check message derived from the equation 3 is
transferred to the bit node function unit 342. The bit node
function unit 342 calculates the bit message using the
updated parity-check message and the initial bit message,
and transfers a new bit message to the check node function
unit. This operation is repeated a predetermined number of
times to obtain the final parity-check message. The bit node
function unit 342 calculates the LLR of the information bit
of each code word through the final parity-check message
according to the following equation 5. The value of the
corresponding bit is then determined from the LLR.

LLR(g;) « Z LLR(ryp)+ LLR(p;) i =

{ 1 LLR(g;) >0 Equation 5
J'Colli]

0 LLR(g) <D

Once all the bit values of the code word are determined,
a new code word is constructed using the bit values and is
fed into the parity checker 343. The parity checker 343
calculates a syndrome for the code word to perform a parity
check. With a non-zero syndrome for the code word, the
parity checker 343 determines that the decoding of the code
word is a failure. If the parity check is successful, the
information bit part is extracted from the code word and
transferred.

To implement the above-stated decoding algorithm in
hardware, the respective message calculators 341, 342, and
344 have to receive soft decision inputs. The LLR calculator
341 receives a soft decision input and calculates the LLR of
the soft decision output. The output of the LLR calculator
341 is a soft decision output, so the bit node function unit
342 needs a summator for summating soft decision inputs
according to the equations 2 and 5. The output of the bit
node function unit is also a soft decision output, so the check
node function unit 344 must receive a soft decision input and
the function of the equation 4 receives the soft decision input
and generates a soft decision output.

The equation 4, which is not a linear function, cannot be
implemented with the basic calculation blocks in hardware.
To solve this problem, the function of the equation 4 can
employ a ROM that receives as many inputs as the number



US 7,178,081 B2

5

of bits representing the soft decision input and generates as
many outputs as the number of bits representing the soft
decision output. Accordingly, the implementation cost of the
check node function unit is greatly dependent upon the size
of the ROM that is determined by the resolution of repre-
senting soft decision input and soft decision output.

The present invention proposes a check node function unit
not using the ROM. For this purpose, the function of the
equation 4 is implemented with basic calculation blocks.
The basic calculation blocks include multipliers and sum-
mators. The multipliers are considerably high in price rela-
tive to the summators, and not preferably used in the present
invention. Hence, powers of n for the soft decision input
cannot be used, and only the linear function can be imple-
mented. For that reason, the function of the equation 4 is
divided into intervals, and the value of the linear approxi-
mation function for each interval is then calculated to
determine the check node function unit 424. The inverse
function of the equation 4 is necessary for the calculation of
the check node function unit 424. The inverse function of the
equation 4 is the same as the equation 4, so the input of the
calculator of the equation 4 must be equal in the number of
bits to the output.

The present invention proposes an interval division
method as illustrated in FIG. 5 for the linear approximation
of the equation 4. The actual function 510 of the equation 4
defines only the positive values because it has an absolute
value as an input. So, the function 510 of the equation 4 is
a monotonically decreasing function that decreases with the
same slope of the exponential function. The interval for the
linear approximation I, is divided as expressed in the fol-
lowing equation 6 so as to have an exponential size. In the
equation 6, n, is the length of a word expressing the input
value, i.e., the word length; and n, is the bit corresponding
to the minimum resolution of decimal places expressing the
input value. The minimum resolution that can be expressed
by n, is 277>

Equation 6

I=[ 250K+ ielo, L, -1}, K=—n,

The accurate function value of the equation 4 for both
boundary values of each interval I, is necessary. The coor-
dinates for both end points of the interval are given, so the
linear approximation equation can be defined by the follow-
ing equation 7.

Equation 7

y=sy+x, i€{0, . .., {I}-1}, rEL,

From the equation 7, slope s, and interval boundary value
x, are defined for each interval. First, the slope s, is defined
as the following equation 8.

(2K —i-1y _ ke Equation 8

2K+n1 —i-1 _ 2K+n1 —i

s;:ROUND[ s m|, iz

The ROUND function of the equation 8 is a function for
designating an input as the most approximate one of the
binary numbers given by 272 as the minimum resolution.
The ROUND function is given by the following equation 9.

Equation 9

X 1
ROUND(x, 12) = 2’”2{ 7t EJ

20

25

30

35

40

45

50

55

60

65

6

The boundary value x, is derived from the slope s; and x,_;
as in the following equation 10.

Equation 10

x=ROUND((2K1-t pKmizielyg 1y | ny), i21,
Xo=ROUND(®(25"1), n,)

FIG. 6 illustrates a circuit 600 for calculating the function
value of the equation 4 using the slope and the boundary
value given by the equations 8 and 10, respectively. The soft
decision inputs are all positive real values, so an input
memory 610 inverts the sign of the negative (-) numbers.
Namely, when the value of the most significant bit (MSB) is
“17, the memory value of the input memory 610 is increased
by one and the input memory 610 performs a 1’s comple-
ment operation. The value of the input memory 610 is
multiplied by the slope s, of each interval at a multiplier 630,
and is added to the interval boundary value generated from
a boundary value memory 620 by an adder 640 to determine
the function value of the equation 4. Finally, to investigate
the interval range of the input value in the input memory
610, a multiplexor (MUX) 650 for selecting the on/off state
of a switch according to the MSB selects an accurate
function value and outputs the selected function value. The
multiplexor 650 outputs the first calculated value when the
bit of the highest order other than O in the input memory is
the first bit, or the second calculated value when the bit of
the highest order other than O is the second bit. In this
manner, the on/off state of the switch for every bit can be
determined.

The unsolved problem in the above-stated method is the
use of multipliers. Typically, the binary multiplier can be
implemented with bit shifters and summators. Namely, for
multiplication by 1.5, the input word is shifted to the right
side by one bit for multiplication by 0.5 which is then added
to itself to result in a binary number, which has a 1.5-fold
value of the input word. In the same way, the bits of the input
word are shifted to achieve a multiplication by 2. The slope
is rounded off to a binary number from the equation 8 and
the input word is a binary number, so the multiplier can be
replaced with a summator and a shifter. Because the number
of slopes is limited, summators and shifters are preferably
used instead of a general-purpose multiplier in the aspect of
curtailment of hardware expenses.

FIG. 7 shows a circuit 700 derived by simplifying the
calculator of FIG. 6 through a curtailment of hardware
expenses. An input memory 710 has the same function as the
input memory 610 of FIG. 6. A summator 740 for summat-
ing the boundary values also has the same function as the
summator 640 of FIG. 6. A slope calculator and multiplier
730 calculates a slope used for multiplication from the bit of
the highest order other than “0” in the input of the input
memory, and multiplies the slope value by way of the shifter
and the summator to generate an output 840. A boundary
calculator 720 calculates a boundary value 960 from the bit
of the highest order other than “0” in the input of the input
memory. FIG. 8 shows the slope calculator and multiplier
730 of the present invention. Assuming that the leftmost bit
is the MSB (Little Endian), an input memory 810 represents
the same block as the input memory 710 of FIG. 7. A slope
calculator 820 comprises a bit shifter 821, a ground 822
representing “0”, a word negater 823, and a switch 824
functioning as a multiplexor. Each bit shifter 821 includes all
bit shifters necessary for constructing each slope. The
ground 822 represents a value of “0” usable in the slope
calculator. The word negater 823 is used for representing the
slope. The switches 824 combine the result values from the
respective shifters to obtain the final result value. The on/off



US 7,178,081 B2

7

state of the switches is determined from the value of the
slope corresponding to a selected interval of the input value.
Thus the hardware resources such as shifters and summators
frequently used in the calculation of each slope can be
reduced. FIG. 9 shows the boundary calculator 720 of the
present invention. The boundary calculator 720 comprises a
bit shifter 910, a ground 920 representing “0”, a word
negater 930, and a switch 940 functioning as a multiplexor.
Each bit shifter 910 includes all bit shifters necessary for
constructing each boundary value. The ground 920 repre-
sents a value of “0” usable in the calculation of the boundary
value. The word negater 930 is used for representing the
boundary value. The switches 940 combine the result values
from the respective shifters to obtain the final result value.
The on/off state of the switches is determined from the
boundary value corresponding to a selected interval of the
input value. Thus the hardware resources such as shifters
and summators frequently used in the calculation of each
boundary value can be reduced. The connection state of final
summators 830 and 950 is predetermined for the most
frequent combination of multiplications of binary values in
each boundary value, thereby bringing about the expectation
of the curtailment of the resources.

While this invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not limited to the disclosed embodiments, but,
on the contrary, is intended to cover various modifications
and equivalent arrangements included within the spirit and
scope of the appended claims.

As described above, the present invention rapidly calcu-
lates the parity-check message by sharing the resources of
the summator and the shifter, relative to the method of
implementing a nonlinear function for calculation of the
parity-check message with ROMs. The use of the summator
and the shift as a shared resource reduces the required
hardware resources more than with the use of a multiplier.
The present invention uses the power of 2 as a boundary
value of the interval divided for a linear approximation,
thereby simplifying the circuits of the slope calculator and
the boundary calculator and greatly reducing errors caused
by approximation. The method of the present invention can
be applied to all the monotonic functions and, particularly,
exponentially increasing or decreasing nonlinear functions.

What is claimed is:

1. A message-passing decoder for low-density parity-
check (LDPC) codes, which is for decoding block codes
encoded with LDPC codes by a message-passing decoding
algorithm, the message-passing decoder comprising:

a log likelihood ratio calculator for receiving a code word
having a consecutive value from block codes encoded
with the LDPC codes, and calculating a log likelihood
ratio;

a bit node function unit for calculating a bit message using
the log likelihood ratio calculated by the log likelihood
ratio calculator and an input parity-check message;

a check node function unit for calculating the parity-check
message using the bit message calculated by the bit
node function unit, and outputting the calculated parity-
check message to the bit node function unit; and

a parity checker for receiving a code word decoded by the
bit node function unit from the final parity-check
message calculated by a repeated decoding of the bit
node function unit and the check node function unit,
and checking a parity,

wherein the parity-check message corresponding to a
logic function output for an input from the bit node
function unit is calculated according to a linear

8

approximation function determined for each divided
interval of the logic function.

2. The message-passing decoder as claimed in claim 1,

wherein the check node function unit comprises:

a multiplier for multiplying the input from the bit node
function unit by a slope of the linear approximation
function for each interval;

a summator for adding a boundary value of the linear
approximation function for each interval to an output
value of the multiplier; and

a multiplexor for selecting an output of the summator
according to an interval range of the input.

3. The message-passing decoder as claimed in claim 1,

wherein the check node function unit comprises:

a slope calculator for calculating a slope, to be multiplied,
from a bit of the highest order other than “0” in the
input from the bit node function unit, and multiplying
the slope with a bit shifter and a summator;

a boundary calculator for calculating a boundary value of

w

10

2 the linear approximation function for each interval
from the bit of the highest order other than “0” in the
input; and

a summator for adding the boundary value calculated by

25 the boundary calculator to an output of the slope

calculator.
4. The message-passing decoder as claimed in claim 3,
wherein the slope calculator comprises:
a bit shifter for shifting each bit of the input to the left or

30 right side so as to construct the slope;
a ground for expressing a value of “0” used in the
calculation of the slope;
a word negater for inverting an output of the bit shifter by
each word sign to express the slope; and
35

a switch for combining the outputs of the word negater
and the ground to output a final result.

5. The message-passing decoder as claimed in claim 4,
wherein the boundary calculator comprises:

a bit shifter for shifting each bit of the input to the left or

40 right side so as to construct the boundary value;
a ground for expressing a value of “0” used in the
calculation of the boundary value;
a word negater for inverting an output of the bit shifter by
45 each word sign to express the boundary value; and

a switch for combining the outputs of the word negater
and the ground to output a final result.

6. The message-passing decoder as claimed in claims 1,

wherein the logic function ®(x) satisfies the following

50 equation:

00 = —logftanh( 3 )
55

wherein x is the input from the bit node function unit.
7. The message-passing decoder as claimed in claim 6,
wherein the interval I, of the linear approximation is deter-

¢ mined by the following equation:

I=[ 25784 yelo, L ny-1), K=-n,
wherein n, is the length of a word expressing the input, i.e.,
a word length; and n, is the bit corresponding to a minimum
resolution of decimal places expressing the input,

the boundary value on either side of the interval being the
power of 2.

65



US 7,178,081 B2

9 10
8. The message-passing decoder as claimed in claim 7, given by 272 as the minimum resolution,
wherein the linear approximation function y satisfies the the ROUND function satisfying the following equation:
following equation:
y=sy+x, i€{0, . .., {L}-1}, vl 5

X 1
ROUND(x, 1;) = 2’”2{2%2 + EJ'

wherein s; is the slope; and x, is the boundary value.
9. The message-passing decoder as claimed in claim 8,

wherein the slope s, satisfies the following equation: 10. The message-passing decoder as claimed in claim 9,

wherein the boundary value x, satisfies the following equa-
) ) tion:
(I)(2K+n1 —x—l) _ (I)(zl(+n1—x)
2K+n1 —i—-1 _ 2K+n1 —i

si = ROUND[ smf|, iz0 x~ROUND((2E+1-_pKmi-irlye 4. | n5), i21,

Xo=ROUND(®(251), 1,).

wherein the ROUND function is a function for designating
the input as the most approximate one of binary numbers I T S



