<table>
<thead>
<tr>
<th>特許番号</th>
<th>特許出願公表番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-504324</td>
<td>P2006-504324A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(51) Int.Cl.</td>
<td>FI</td>
</tr>
<tr>
<td>HO4J 11/00</td>
<td>HO4J 11/00</td>
</tr>
<tr>
<td>HO4J 15/00</td>
<td>HO4J 15/00</td>
</tr>
<tr>
<td>HO4B 1/713</td>
<td>HO4J 13/00</td>
</tr>
<tr>
<td>テーマコード (参考)</td>
<td>5K022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21) 出願番号</td>
<td>特願2004-546500 (P2004-546500)</td>
</tr>
<tr>
<td>(22) 出願日</td>
<td>平成14年11月26日 (2002.11.26)</td>
</tr>
<tr>
<td>(23) 申请国</td>
<td>韓国 (KR)</td>
</tr>
<tr>
<td>(31) 優先権主張番号</td>
<td>2002/55638</td>
</tr>
<tr>
<td>(32) 優先日</td>
<td>平成14年10月26日 (2002.10.26)</td>
</tr>
<tr>
<td>(85) 翻訳文提出日</td>
<td>平成17年6月27日 (2005.6.27)</td>
</tr>
<tr>
<td>(86) 国際出願番号</td>
<td>PCT/KR2002/002214</td>
</tr>
<tr>
<td>(87) 国際公開日</td>
<td>平成16年5月6日 (2004.5.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(71) 出願人</td>
<td>596099882</td>
</tr>
<tr>
<td>エレクトロニクス、アンド、テレコミュニケーションズ、リサーチ、インスチチュート</td>
<td></td>
</tr>
<tr>
<td>ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE</td>
<td></td>
</tr>
<tr>
<td>大韓民国、デジョン、ユソン、ガヨンドン161</td>
<td></td>
</tr>
<tr>
<td>(71) 出願人</td>
<td>505156639</td>
</tr>
<tr>
<td>ジョーン、アン、ユニバーシティ</td>
<td></td>
</tr>
<tr>
<td>JOONG ANG UNIVERSITY</td>
<td></td>
</tr>
<tr>
<td>大韓民国ソウル特別市、ドルジャク、ヘクソクドン、221</td>
<td></td>
</tr>
</tbody>
</table>

(54) 【発明の名称】combパターンシンボルの周波数変調直交周波数分割多重接続方法

(57) 【要約】
本発明は、周波数変調直交周波数分割多重接続方法に関する。本発明の周波数変調直交周波数分割多重接続方法は、変調されたデータシーケンスに対して、下記のよう
に全体使用可能周波数帯域において所定の間隔で配置される所定個数の副搬送波(副搬送波グループ)からなるcombパターンの周波数領域信号X(k) (combシンボル、kは周波数インデックス)を生成する第1ステップと、前記combシンボルを独立的な周波数オフセットを有する周波数変調を行う第2ステップと、前記combシンボルを時間領域信号x(n) (nは時間インデックス)に変換した後でフィルタ変換させて送信する第3ステップを含む。
(2)

【特許請求の範囲】

【請求項1】

周波数跳躍直交周波数分割多重接続方法において、
変調されたデータシーケンスに対して、下記数式のように全体使用可能周波数帯域において所定の間隔で配置される所定個数の副搬送波(副搬送波グループ)からなるcombパターンの周波数領域信号X(k)(combシンボル、kは周波数インデックス)を割り当てること第1ステップと、

前記combシンボルを独立的な周波数オフセットを有するように周波数跳躍を行う第2ステップと、

前記combシンボルを時間領域信号X(n)(nは時間インデックス)に高速フーリエ変換させて送信する第3ステップと、

を含むことを特徴とする周波数跳躍直交周波数分割多重接続方法。

【数式1】

\[N = \sum_{i} N_{c} N_{s} = N_{c} * N_{s} (N_{c} = N_{s} = Const.である場合) \]

但し、

\(N_{c} \): 全体使用可能周波数帯域で割り当て可能なcombシンボルの個数

\(N_{s} \): 1番目combシンボル内の副搬送波個数、1番目combシンボルのサイズ、1番目combシンボルを構成する副搬送波グループのサイズ

【数式2】

\[
X_{k}(n) = \begin{cases}
0, & k = p_{c}N_{c} - q_{i} \\
0, & \text{otherwise}
\end{cases}
\]

但し、

\(p_{c} = 0, 1, \ldots, N_{c} - 1 \)

\(q_{i} = 0, 1, \ldots, N_{s} - 1 \)

【請求項2】

全体使用可能帯域において、\(N = 2^{n} \)（\(n \)は負でない整数）個の副搬送波が存在する場合、前記第1ステップは、

副搬送波の個数が\(2^{n} \)であるcombシンボルX_0、0が最上位ノードであり、\(2^{n} \)個の副搬送波からなり周波数オフセットがbであるcombシンボルX_{2^b}、bは\(2^{n} - 2^{b} \)個の副搬送波からなり、周波数オフセットが各々b及び\(b + 2^{k} \)であるcombシンボルX_{2^b - 1}、\(b + 2^{k} \)が各ノードであり、副搬送波の個数が1であるcombシンボルが終端ノードであるブロック-2^nにより、1個から\(2^{n} \)個までの副搬送波からなるcombシンボルトリーを構成する第4ステップと、

移動局の要求送信率に適合したサイズの使用可能なcombシンボルを前記移動局に割り当て、前記ブロック-2^nにおいて前記割り当てられたcombシンボルの下位ノードに対応するcombシンボルは、前記割り当てられたcombシンボルが割り当て解離される時まで前記移動局が属するセル内に割り当てられないようにすることによって、combシンボルを崩しやすく割り当てる第5ステップと、

を含むことを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項3】

全体使用可能帯域で存在する\(N = 2^{n} \)（\(n \)は負でない整数）個の副搬送波の中で、ナル搬送波の存在によりデータを送信できる副搬送波の個数が2の指数形態でない場合、前記第1ステップは、

ナル搬送波に対応されるデータを無視することを特徴とする請求項2に記載の周波数跳躍直交周波数分割多重接続方法。
躍直交周波数分割多重接続方法。
【請求項4】
全体使用可能帯域で存在する\(N = 2^n\)（\(n\)は負でない整数）個の副搬送波の中で、ナル搬送波の存在によりデータを送信できる副搬送波の個数が2の指数形態でない場合、前記第1ステップは、
ナル搬送波にナルデータを挿入し、本来のナル搬送波に対応されるデータに対してナル搬送波でない他の副搬送波を割り当けることによって、データ送信率の損失がないようにすることを特徴とする請求項2に記載の周波数調調直交周波数分割多重接続方法。
【請求項5】
全体使用可能帯域において、\(N\)個（\(2^{n-1} < N \leq 2^n\)、
【数3】
\[
N = \sum_{i=0}^{2^n} a_i 2^i \quad (a_i = 0, \ldots, j)
\]
\(n\)は負でない整数）の副搬送波が存在する場合、前記第1ステップは、
副搬送波の個数が\(2^n\)である\(\text{comb}\)シンボル\(X_{1,0}\)が最上位ノードであり、\(\sum_{b=1}^{2^n-1} a_b\)個の副搬送波からなり周波数オフセットが\(a\)である\(\text{comb}\)シンボル\(X_{a,b}\)は、\(2^n - a - 1\)個の副搬送波からなり周波数オフセットが各々\(b\)及び\(b + 2^a\)である\(\text{comb}\)シンボル\(X_{a-1,b}\)と\(X_{a+1,b+2^a}\)が子ノードであり、副搬送波の個数が1である\(\text{comb}\)シンボルが終端ノードであるトリー\(T_2\)により、1個から\(2^n\)個までの副搬送波からなる\(\text{comb}\)シンボルサブトリーを構成する第6ステップと、
前記各々の1に対し前記第6ステップを行って\(a\)個の\(\text{comb}\)シンボルサブトリーで構成され、総\(N\)個までの副搬送波からなる多重トリーを構成する第7ステップと、
移動局の要求送信率に適合したサイズの使用可能\(\text{comb}\)シンボルを前記多重トリーのいずれかのサブトリーから選択して前記移動局に割り当て、前記選択されたサブトリーにおいて、前記割り当てられた\(\text{comb}\)シンボルの下位ノードに対応する\(\text{comb}\)シンボルは、前記割り当てられた\(\text{comb}\)シンボルが割り当て解除される時前記移動局が属するセル内で割り当てられないとすることによって、\(\text{comb}\)シンボルを衝突なく割り当てる第8ステップと
を含むもの。
前記複数のサブトリーからなる多重トリーにおいて、\(\text{comb}\)シンボルは前記数式2から下記数式に再定義されるものを特徴とする請求項1に記載の周波数調調直交周波数分割多重接続方法。
【数4】
\[
X_{n,N,\tau,q}(k) = \begin{cases}
\neq 0, & k = pN + q + K_\tau \
= 0, & \text{その他}
\end{cases}
\]
但し、
\(s\)はサブトリーインデックスであり、
\(K_\tau\)はサブトリーの開始周波数インデックスであり、
\(p = 0, 1, \ldots, (N - 1)(N - 1)\)はサブトリーの副搬送波の数であり
\(q = 0, 1, \ldots, N - 1\)である。
【請求項6】
前記第8ステップは、
移動局の要求送信率に適合したサイズの使用可能\(\text{comb}\)シンボルを前記多重トリーの中で、いずれかの\(\text{comb}\)シンボルも割り当てられないサブトリーを優先的に選択するこ
とを特徴とする請求項5に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項7】
前記第1ステップは、
全体使用可能帯域に存在するN個の副搬送波をM個のサブバンドに分割する第9ステップと、
副搬送波の個数が2^n 個であるcombシンボルX_{1,0}が最初にノードであり、2^n - 1 個の副搬送波からなる周波数オフセットがbであるcombシンボルX_{2,b}は
2^n - 1 個の副搬送波からなる周波数オフセットが各々b及びb + 2^n 個であるcombシンボルX_{2,b}とX_{2,b + 2^n}が子ノードであり、副搬送波の個数が
1であるcombシンボルが統一ノードであるトリーT_{2,1}にあり、1個から2^n 個までの副搬送波からなるcombシンボルサブトリーを構成する第10ステップと
前記各々のサブバンドに対して前記第10ステップを行って、M個のcombシンボルサブトリーからなり、総N個までの副搬送波からなる多重トリーを構成する第11ステップと。

移動局の要求送信率に適合したサイズの使用可能combシンボルを前記多重トリーの
いずれかのサブトリーから選択して前記移動局に割り当て、前記選択されたサブトリーに
おいて、前記割り当てられたcombシンボルの下位ノードに対応するcombシンボルは、
前記割り当てられたcombシンボルが割り当て解消される時まで前記移動局が属する
セル内で割り当てられないようにすることができてMcombシンボルを作成なく割り
当てる第12ステップを含むもの。

前記M個のサブトリーからなる多重トリーにおいて、combシンボルは前記記号2か
ら下記記号に再定義されることを特徴とする請求項1に記載の周波数跳躍直交周波数分割
多重接続方法。

【数5】

\[X_{s,t,N_c,q}(k) \begin{cases} \neq 0, & k = pN_c + q + K_t \\ = 0, & その他 \end{cases} \]

但し、
sとtはサブトリーインデックスであり、
K_tはサブトリーの開始周波数インデックスであり、
p = 0, 1, ..., \left(N_{s,t} / N_c \right) - 1 \left(N_{s,t} はサブトリーの副搬送波の数であり\right)
q = 0, 1, ..., N_c - 1
である。

【請求項8】
前記第2ステップは、
前記移動局に割り当てられたcombシンボルが属するサブトリー単位で前記combシンボルの周波数跳躍を行うことを特徴とする請求項7に記載の周波数跳躍直交周波数分
割多重接続方法。

【請求項9】
前記第2ステップは、
セル内の移動局に割り当てられたcombシンボルX_{s,b} (k)を周波数跳躍バター
ンを表す記号5の周波数表示閾値Y_{s,b} (k; 1)に応じて、前記combシンポ
ルの周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重
接続方法。

\[Y_{s,b} (k; 1) = X_{s,b} ((k+P(1)) \mod N) \]

但し、
P(1)(0 \leq P(1) \leq N)は、時刻tに応じるセル内のcombシンボルの周波数跳躍パターンであり、
Nは全体幅送波波の個数である。
【請求項10】
前記第2ステップは、
前記combシンボルをサイズが同一であるが、互いに異なる周波数オフセットを有するcombシンボルに周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直
交周波数分割多重接続方法。
【請求項11】
前記第2ステップは、
全てのcombシンボルがランダムに周波数跳躍パターンを有するように、前記combシンボルの周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直交周波数
分割多重接続方法。
【請求項12】
前記第2ステップは、
同じセル内の全ての移動局に対して同じ周波数跳躍パターンを有するように、前記combシンボルの周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直交周波数
分割多重接続方法。
【請求項13】
前記第2ステップは、
互いに異なるセル間の移動局に対して互いに異なる周波数跳躍パターンを有するように、
前記combシンボルの周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直交周波数
分割多重接続方法。
【請求項14】
前記第2ステップは、
周波数跳躍間隔がセル別に異なるように、前記combシンボルの周波数跳躍を行うこ
とを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項15】
前記第2ステップは、
周波数跳躍方向がセル別に異なるように、前記combシンボルの周波数跳躍を行うこ
とを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項16】
移動局の要求によってcombシンボルを追加に割り当てる場合、前記第1ステップは、
現在割り当てられているcombシンボルを構成する副搬送波グループの隣接グループから
なるcombシンボルを追加に割り当けることを特徴とする請求項1に記載の周波数跳
躍直交周波数分割多重接続方法。
【請求項17】
前記追加に割り当てられるcombシンボルは、
前記現在割り当てられているcombシンボルを構成する副搬送波グループと同じサイ
ズの副搬送波グループ(副搬送波グループ群)のいずれかの副搬送波グループからなること
を特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項18】
前記第2ステップは、
前記追加に割り当てられるcombシンボルを前記現在割り当てられているcombシ
ンボルを構成する副搬送波グループと同じサイズの副搬送波グループ(副搬送波グループ
群)内で周波数跳躍を行うことを特徴とする請求項1に記載の周波数跳躍直交周波数分
割多重接続方法。
【請求項19】
前記第2ステップは、
割り当てられたcombシンボルを構成する副送波グループの和を周波数識別最小単位として、数式6により決定される番号に対応する副送波グループからなるcombシンボルと周波数識別を行うもの。
combシンボルが追加に割り当てられた場合、前記副送波グループの和は、初期に割り当てられたcombシンボル及び追加に割り当てられたcombシンボルを構成する全ての副送波グループの和であることを特徴とする請求項16に記載の周波数跳躍直交周波数分割多重接続方法。

\[G \equiv (g_n + P(1) \times 1) \mod N \]

\[G \] : 時間スロット1でのグループ番号
\[P(1) \] : 周波数跳躍パターン個数
\[i \] : 割り当てられたグループの数
\[g_n \] : 最初時間スロットにおけるグループ番号

【請求項20】
前記第2ステップは、
最初割り当てられたcombシンボルを構成する副送波グループを周波数跳躍の最小単位として、割り当てられたcombシンボルの周波数跳躍を行うことを特徴とする請求項16に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項21】
前記第3ステップは、
Decimation In Frequencyアルゴリズムに応じて逆部分高速フーリエ変換させるもの。

高速フーリエ変換部の入力アドレスと前記周波数インデックスkとが順次にマッピングされて、前記周波数領域信号X(k)が入力される第1ステップを含むことを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項22】
前記第4ステップは、
前記逆部分高速フーリエ変換部を構成するバタフライの入力端に全て0が入力される場合には、バタフライ演算を行わないように制御する第14ステップをさらに含むことを特徴とする請求項21に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項23】
前記第5ステップは、
Decimation In timeアルゴリズムに応じて逆部分高速フーリエ変換させるもの。

前記逆部分高速フーリエ変換部の入力アドレスのビット逆転された値と前記周波数インデックスkとがマッピングされて、前記周波数領域信号X(k)が入力される第1ステップを含むことを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項24】
前記第6ステップは、
前記逆変換高速フーリエ変換部を構成するバタフライの入力端に全て0が入力される場合には、バタフライ演算を行わないように制御する第16ステップをさらに含むことを特徴とする請求項23に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項25】
前記第3ステップから伝送されたcombシンボルに対応する時間領域信号y(n)を受信する第1ステップと、
前記時間領域信号y(n)を最初設定された周波数オフセットに復元させる第18ステップと、
前記時間領域信号y(n)を周波数領域信号Y(k)(kは、周波数インデックスである)に高速フーリエ変換させて、変調されたデータシーケンスを復調する第19ステップとをさらに含むことを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項26】
前記第19ステップは、
Decimation in Frequencyアルゴリズムに応じて高速フーリエ変換が行われ、
高速フーリエ変換部の出力アドレスのビット逆転された値と前記周波数インデックスを
とがマッピングされて、前記周波数領域信号Y(k)が出力される第20ステップを含むこ
とを特徴とする請求項25に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項27】
前記第19ステップは、
前記高速フーリエ変換部から出力される前記周波数領域信号Y(k)に応じて、前記高
速フーリエ変換部を構成するパラメトリの演算が行われるか、行われないようにする第2
1ステップをさらに含むことを特徴とする請求項26に記載の周波数跳躍直交周波数分割
多重接続方法。
【請求項28】
前記第19ステップは、
Decimation in timeアルゴリズムに応じて高速フーリエ変換が行われ、
高速フーリエ変換部の出力アドレスと前記周波数インデックスkを順次にマッピング
されて、前記周波数領域信号Y(k)が出力される第22ステップを含むことを特徴とす
る請求項25に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項29】
前記第19ステップは、
前記高速フーリエ変換部から出力される前記周波数領域信号Y(k)に応じて、前記高
速フーリエ変換部を構成するパラメトリの演算が行われるか、行われないようにする第2
3ステップをさらに含むことを特徴とする請求項28に記載の周波数跳躍直交周波数分割
多重接続方法。
【請求項30】
前記データシーケンスは、
バイロット信号または制御信号に対応するシーケンスであることを特徴とする請求項1
に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項31】
前記第2ステップは、
0を含む所定の周波数オフセットにて維持されるように、周波数跳躍を行うことを特徴と
する請求項30に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項32】
前記第1ステップは、
前記高速フーリエ変換部の入力端アドレス及び前記高速フーリエ変換部の出力端アド
レスにおいて、各々0番アドレスを含む副選送波グループを優先順位に付与し、前記副
選送波グループの強制グループに対して順次に優先順位を付与して、優先順位にしたがっ
て前記パイロット信号または制御信号に対してcombシンボルを割り当てることを特徴と
する請求項31に記載の周波数跳躍直交周波数分割多重接続方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、直交周波数分割多重接続(Orthogonal Frequency Division Multiple Access，OFDMA)方法、特に、無線移動通信システムにおけるcombシンボルの周波数跳躍OFDMA方法に関する。
【背景技術】
【0002】
直交周波数分割多重化（Orthogonal Frequency Division Multiplexing, OFDM）方式は、使用可能な全ての帯域を所定数の帯域域
に分割し、帯域域の副信送波（sub-carrier）を列並び変調し送信する多重副信送
波送信（multi-carrier transmission）方法で、各々の
副信送波には、データ量が少ない低速データが割り当てられる。変調方法は、データ容量
の変化または確実な送信要求によって、単純なQPSKから256-QAMなど多様に適
用される。
【0003】
相互干渉を起こさないで他のチャネルに近く接近するために、チャネル信号は、相互直
交性（Orthogonality）を有しており、これに伴い各チャネルの中心周波数
においては、他の副信送波の影響が存在しないため、高い帯波数の利用効率を有する。各
信送波は、帯域域（例えば、1 KHz）信号として処理されて送信速度が遅いため、信号が
多重反射されて送信されることによって遅延時間が存在しても（例えば、500 nsec
）OFDMシンボル間の干渉が除去できる。
【0004】
すなわち、OFDM方式では、相互直交性のある副信送波が用いられるため、帯波数の
利用効率が高くなり、1つずつ有する簡単な周波数帯域等化器で多重組合チャ
ネルを容易に克服でき、高速デジタル変換（Fast Fourier Transfo
rm, FFT）を利用して高速で具現化できるため、最近高速のデジタル通信システムの
送信方式に広く用いられている。
【0005】
例えば、DAB（Digital Audio Broadcasting）、DVB（
Digital Video Broadcasting）、IEEE 802.11a、
HIPERLAN/2などの無線通信システムOFDM方式が用いられ、xDSL（Di
gital Subscriber Line）のような有線通信システムでもOFDMと
似たDMT（Discrete Multitone）方式が用いられている。
【0006】
一方、ブロードキャスト方式またはポイント・トゥ・ポイント（Point-To-P
oint）方式の通信システムとは異なり、複数の移動局がOFDM方式を使用してデータ
を送信する場合には、多重接続方式を必要とする。代表的な方式には、直交周波数分割
多重化時分割多重接続方式（OFDM-TDMA）、直交周波数分割多重化周波数分割
多重接続方式（OFDM-FDMA（OFDMA））及び直交接続周波数分割多重化コード分割
多重接続方式（OFDM-CDMA）がある。
【0007】
OFDMAは、各移動局が全体副信送波の中で所定の副信送波を常に用いることができ
、副信送波の割り当ては、移動局の要求によって可能される。すなわち、OFDM
Aは各移動局が要求するデータ送信帯に応じて、副信送波の周波数が異なるように割り当て
されることによって、資源が効率的に分配できる。OFDM-TDMAシステムにおいて各
移動局がデータを送受信する前に要求されるプリアンプをOFDMAは要求しないため
、高い送信効率を有する。
【0008】
特に、OFDMA方式は多数の副信送波を使用する場合（すなわち、FFT部のサイズ
が大きい場合）に適合するため、広い地域（遅延域が比較的小さい）を有する
無線通信システムに効率良く適用される。
【0009】
一方、周波数跳躍OFDMA（Frequency Hopping OFDMA、F
H-OFDMA）方式は、無線チャネルで深くフェードアウトされた副信送波が存在する
場合や他の移動局による副信送波の干渉が存在する場合、これを克服して周波数ダイバーシ
チ効果を高め干渉平均効果を高めるのに用いられる。
これに対しては、Richard van Nee and Ramjee Prasad, 'OFDM Wireless Multimedia Communications, Artech House, 2000'に詳細に開示されている。

【0011】
図1Aは、従来のOFDMA方式に従ってクラスタの周波数跳躍パターンを説明するための図である。図に示されているように、移動局の要求データ送信率に応じてそれぞれ異なる周波数帯域用、b及びcが割り当てられ、割り当てられた周波数帯域は、時間に応じて周波数跳躍を行うことで変化する。図1Aに示す各格子の縦軸11は、周波数領域において連続した副搬送波の集まり、すなわち周波数帯域格子内の副搬送波数×副搬送波の周波数間隔、クラスター(Cluster)を示し、各格子の横軸10は、シンボル周産期を示す。

【0012】
図1Aに示す従来のFH-OFDMA方式によれば、全体使用可能な副搬送波から所定の個数の隔離した副搬送波がグループ化して構成されたクラスタが基本単位として移動局に割り当てられ、クラスタが時間スロットに沿って周波数跳躍を行うことによって、クラスタが持続的に周波数ナルに落ち着くことを防止する。

【0013】

【0014】
図1Bは、従来のOFDMA方式によってクラスタが周波数跳躍を行う過程でチャンネルの周波数ナルに落ち着く(fall into)状態を示す図であって、図に示すように、従来の技術によれば、連続した副搬送波の配列であるクラスタ40、41は、時間スロットに沿ってランダムに周波数跳躍を行い、クラスター40が時間スロット3でのように、チャンネルの周波数ナルに落ち着いた場合に発生するバーストエラー(burst error)を克服するため、インターリービング(interlacing)及び符号化が行われる。

【発明の開示】
【発明が解決しようとする課題】
【0015】
しかし、従来のクラスタ方式によれば、移動局は自分に割り当てられたクラスタに関わらず、全体副搬送波に対してFFTを行うために電力消費が大きいという問題点がある。

【0016】
また、従来の技術によれば、制御信号のようにデータの長さが短くてインターリービングが行われない短いパケットを送信する場合には、バーストエラーを克服できないという問題点がある。

【課題を解決するための手段】
【0017】
本発明には、一実施の方策は、OFDMAの副搬送波としてクラスタを移動局に割り当てる代わりに、combシンボルを移動局に割り当てることによって、短いパケットが送信される場合にもバーストエラーを克服できる、combシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。

【0018】
また、本発明に係る一実施の範囲は、OFDMAの副搬送波としてcombシンボルを移動局に割り当てることによって、FFT演算を減少させることができるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。
また、本発明に係る実施の形態は、combシンボルを移動局に追加に割り当て場合、既割り当てられたcombシンボルと同じサイズを有し、かつ既割り当てられたcombシンボルの副離散波に降接した副離散波からなるcombシンボルを移動局に割り当てることによって、FFT演算量を減少させることのできるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0020】

また、本発明に係る実施の形態は、combシンボルの周波数跳躍の最小単位を割り当てられたcombシンボルのサイズと設定することによって、FFT演算量を減少させることのできるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0021】

また、本発明に係る実施の形態は、combシンボルを追加に割り当て場合、周波数跳躍の最小単位を最初割り当てられたcombシンボルのサイズに設定することによって、周波数跳躍に応じて副離散波の間隔を変化させてFFT演算量を減少させ、かつ周波数ディバイナーシチを増加させることのできるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0022】

また、本発明に係る実施の形態は、combシンボルのサイズ別に副離散波グループ群を形成して、データ送信率に適した所定の副離散波グループ群内だけでcombシンボルを割り当て周波数跳躍を行うことによって、周波数の利用効率を向上させ、かつFFT部の演算量を減少させることのできるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0023】

また、本発明に係る実施の形態は、いずれかの基地局セルに属する全ての移動局に同じ周波数跳躍パターンを持つことによって、セル内の移動局間の干渉を防止できるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0024】

また、本発明に係る実施の形態は、基地局セル別に移動局に割り当てるcombシンボルの周波数跳躍パターンを異にするようにすることで、セル間の干渉を最小化できるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0025】

また、本発明に係る実施の形態は、パイロット信号(pilot tone)に対してFFT部の演算量が最も小さいグループの副離散波からなるcombシンボルを優先順位にして割り当て、周波数跳躍を行わないようにすることによって、移動局が全体帯域に対するチャネル情報が最小の電力で得られるようにするcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0026】

また、本発明に係る実施の形態は、データ送信率に応じて多様なサイズのcombシンボルをトリー構造または多重トリー構造に構成し、任意の基地局セルからトリー構造または多重トリー構造に応じてcombシンボルを移動局に割り当てることによって、セル内の全てのcombシンボルが直交するようにcombシンボル資源を割り当てることのできるcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0027】

また、本発明に係る実施の形態は、データ送信率に応じて多様なサイズのcombシンボルを構成する場合、1つのセルにおいて、全てのcombシンボルが任意の1つの周波数跳躍パターンに応じて周波数領域から跳躍して、互いに異なる間隔の副離散波からなるcombシンボルが衝突されずに周波数跳躍が可能なcombシンボルの周波数跳躍直交周波数分割多重接続方法を提供することを目的とする。【0028】
なお、本発明は、上記の実施の形態に限定されるものではなく、本発明に係る技術的考え方から逸脱しない範囲内で様々な変更が可能であり、それらも本発明の技術的範囲に属する。

【0029】
上記のような目標を達成するために、本発明は、周波数移動直交周波数分割多重接続方法において、変調されたデータシーケンスに対して全体使用可能周波数帯域において所定間隔で配置される所定個数の副従送波(副従送波グループ)からなるcombパターンの周波数領域信号X(k) (combシンボル、kは周波数インデックス)を割り当てる第1ステップと、前記combシンボルを独立する周波数オフセットを有するように周波数変調を行う第2ステップと、前記combシンボルを時間領域信号x(n) (nは、時間インデックス)に逆高速フーリエ変換し送信する第3ステップを含む周波数移動直交周波数分割多重接続方法を提供する。

【0030】
上述した目的、特徴及び長所は、添付した図面と関連した次の詳細な説明によりさらに明確になるはずである。まず、各図面の構成要素に参照番号を付加するにおいて、同じ構成要素に限ればとくに異なる図面にて示されているものや、図面にて示されているものの一部が異なる図面においても示されているということに留意しなければならない。また、本発明を説明するにおいて、関連公知技術に対する具体的な説明が本発明の要旨を必要以上に不明瞭にすると判断される場合、その詳細な説明を省略する。

【発明を実施するための最良の形態】

【0031】
以下、添付した図面を参照し本発明に対する例を詳細に説明する。

【0032】
図2は、本発明が適用されるcombシンボルのFH-OFDMAシステムブロック図であって、図面にて示されているように、FH-OFDMA通信システムとは、送信システム210と受信システム230とからなる。

【0033】
送信システム210は、変調部211、副従送波割り当て部212、周波数変調部213、逆高速フーリエ変換部(IFFT)214及び無線信号送信部215からなる。

【0034】
送信されるデータシーケンスは、変調部211でQPSKなどのような公知の変調技術により変調されて信号値をマッピングされる。変調技術は、システム設計者の選択事項であって、本発明は特定の変調方法に限定されないものと理解されなければならない。

【0035】
複数の移動局は、各々の要求送信率に応じて、互いに異なるサイズの副従送波グループからなるcombシンボルを副従送波割り当て部212から割り当てられて、前記変調部211で変調された複素数を各副従送波信号に割り当てる。

【0036】
周波数変調部213では、副従送波を時間スロットに沿って与えられたパターンに応じて周波数変調を行って、周波数領域信号X(k)をIFFT部214に送る。IFFT部214により周波数領域信号X(k)から変換された時間領域信号x(n)は、無線信号送信部215で多重経路フェーディング(Multipath fading)によるシンボル間干渉(Inter Symbol Interference; ISI)を防止するために、保護区間が挿入された後にアナログ信号に変換されて受信システム230に送信される。

【0037】
受信システム230は、無線信号受信部232、高速フーリエ変換部FFT233、逆周波数変調部234、副従送波復元部235、復調部236からなる。

【0038】
無線信号受信部232は、無線通信チャンネル環境220を介して受信システム230に
送信された無線信号を受信しサンプリングした後に保護区間を除去して、時間領域信号や
(y(n))をF.T. 部233で出力する。F.T. 部233で時間領域信号y(n)は、周波数領域
信号Y(k)に変換される。逆周波数変換部234では、通信システム210で時空スロッ
トに沿って周波数変換を行ったcombシンボルを周波数変換前の副搬送波周波数に復元
させ、副搬送波復元部235では、移動局別に割り当てられたcombシンボルの副搬送
波から複数個を表現されるデータシーケンスを復元する。最後に、復調部236を介して
データシーケンスが復元される。
【0039】
図3は、本発明の一実施の形態によって副搬送波からなるcombシンボルを周波数領域
で示した図であって、本発明の一実施の形態では、図3に示されているように、全体使
用可能周波数帯域にわたって同一周波数間隔を有するcombパターンの副搬送波を割り
当てる。
【0040】
本発明では、このようなcombパターンの副搬送波集合をcombシンボル、前記副
搬送波集合を副搬送波グループであると各々定義する。図3において、参照番号30ない
し33は、各combシンボルを示す。
【0041】
全体使用可能周波数帯域において、使用可能な全体副搬送波の個数をN_c、i番目のco
mbシンボルを構成する副搬送波の個数をN_{ci}、全体使用可能周波数帯域で割り当て可
能なcombシンボルの個数をN_cとすると、次の数式1のような関係式が成立する。
【数式1】

\[\frac{N_{c}}{N_{x} N_{z}} = N_{c} \times N_{z} (N_{x} = N_{z} = \text{const.である場合}) \]

但し、
N_c：全体使用可能周波数帯域で割り当て可能なcombシンボルの個数、周波数オフ
セットの数
N_{ci}：i番目combシンボル内の副搬送波個数、i番目combシンボルのサイズ
i番目combシンボルを構成する副搬送波グループのサイズである。
【0042】
ここで、N_c個々のcombシンボルを構成する副搬送波の個数N_cは、移動局の要
求データ送信量に応じて個別的に設定されることができる。例えば、あるcombシンボ
ルは4個の副搬送波からなることができる反面、他のcombシンボルは64個の副搬送
波からなることができる。
【0043】
一方、図3に示されているように、i番目combシンボルを構成する副搬送波間には
Δf_1（=N_c*Δf）[Hz]の間隔を有し、下記の数式2のように表現される。
【数式2】
数式2

\[X_{k\ell}(k) = \begin{cases}
0, k = p, N_c - q; \\
0, \text{otherwise}
\end{cases} \]

ただし、

\[p = 0, 1, \ldots, N_x - 1 \\
q = 0, 1, \ldots, N_c - 1 \]

【0044】
このようなcombシンボルを基本単位として多重接続する場合には、combシンボルを構成する副波波長全体周波数帯域において同じ周波数間隔（\(\Delta f_i = N_c * \Delta f \) [Hz]）で離れているため、combシンボル自体で周波数ダイバシティ効果を得ることができる。また、combシンボルが時間スロットに沿って周波数変調を行うことによって、周波数ダイバシティ効果と干渉平均効果を得ることができる。

【0045】
combシンボルを周波数変調しながら時間に渡って行なう方法を後述する。

【0046】
図4は、本発明の一実施の形態に係るcombシンボルの周波数変調の例を説明するための図である。図に示されているように、4つのcombシンボルを見、5、51各々を構成する副波波長全体周波数帯域において同じ周波数間隔で離れているため、同じ時間の副波波長が周波数変調に応じてパーストエラーを防止できることを示している。したがって、本発明の一実施の形態に係るcombシンボルの周波数変調方式は、短いパケットが選択される場合、従来の技術であるクラスタ方式に比べて、優れた周波数ダイバシティ効果を有する。

【0047】
以上で説明した通り、combシンボルを基本単位として各周波波長に副波波長を割り当て、各周波波長の信号をcombシンボルの周波数オフセットに区別すれば、以下で説明される部分高速フーリエ変換(partial FFT)を利用して、受信システムよりで各移動局に割り当てられた副波波長に該当する信号だけを復元できる。

【0048】
partial FFTを数式的に説明すれば、次の通りである。

【0049】
FFTは、デジタル信号処理アルゴリズムの1つで、離散フーリエ変換(Disc rete Fourier Transform, DFT)を高速度化するアルゴリズムである。FFTは、リアルタイム信号処理の目的に1つまたはそれ以上の物理装置の集積回路内で現実化される。本発明の一実施の形態に係るcombシンボルのFH-OFDMA方法では、図2のFFT部を233で現実化される。

【0050】
N-ポイント順方向(direct)DFT変換式は、次の数式3のように表現される。

数式3

\[Y(k) = \sum_{n=0}^{N-1} y(n) W^{nk}, \quad k = 0, 1, \ldots, N-1 \]

但し、

\(n \): 時間インデックス

\(k \): 周波数インデックス
N: ポイント
W=e^{-j\pi N/N}: 回転因子 （twiddle factor）

【0051】
上記の数式3において、y(n)は受信システム230で受信した時間領域のcombシ
ンボル、すなわちOFDM信号をサンプリング間隔T [秒]でサンプリングした値を表し
、Y(k)はy(n)の周波数領域信号を示す。
【0052】
保護区間を除外したOFDMシンボル周期をT [秒]とすれば、搬送波間隔Δf [Hz]
は1/Tと同じである。したがって、搬送波周波数をf_c [Hz]とすると、Y(k)は

$$f_c + \left(k - \frac{N}{2} \right) \Delta f \ [Hz]$$

での値を示す。
【0053】
数式3の周波数領域インデックスと時間領域インデックスであるk及びnは、次の数式
4のように各々2個の重要な変数に分離して定義できる。
【数4】

数式4

\[k = p_c N_c + q_c, \quad \{ p_c = 0, 1, \ldots, N_c - 1 \} \]
\[q_c = 0, 1, \ldots, N_c - 1 \]

\[n = r_c N_c + s_c, \quad \{ r_c = 0, 1, \ldots, N_c - 1 \} \]
\[s_c = 0, 1, \ldots, N_c - 1 \]

ここでp_cは1つのcombシンボルを構成する個々の搬送波を表現し、q_cは当該combシン
ボルの搬送波オフセットを表現する。
【0054】
例えば、搬送波オフセットq_cはシステム設計者の選択によって、0, N_c/2, N_c/4, N_c/8, N_c/16, N_c/32, N_c/64 [Hz]などになるように決定することができます。したがって、搬送波オフセットq_cは、
特定のパターンに限定されないものと理解されなければならない。
【0055】
数式3の変数kとnを数式4で定義された変数p_c, q_c, r_c, s_cに置換しDFT
式をさらに構成すれば数式5のようなである。
【数6】
数式5

\[Y(p,q) = \sum_{s=0}^{N_w-1} W^{-sp} W^{-sq} g(q,s) \]

但し、

\[g(q,s) = \sum_{r=0}^{N_w-1} y(r,s) W^{-r} \]

ここで、\(N_w = N_{x1} \cdot p = p_1 \cdot q = q_1 \cdot r = r_1 \cdot s = s_1 \)である。

【0056】

本発明の一実施の形態によれば、受信システム230において移動局は、全体副搬送波ではなく自己に割り当てられた副搬送波のみを必要とする。したがって、自己に割り当てられたcombシンボルのみを処理する場合には、数式5で移動局の周波数オフセットに該当する変数\(q_1 \)が定数となる。したがって、この場合、\(g(q,s) \)は、\(N_{C} \)点に対するDFT演算となり、\(N_{C} \)個の複素数積算を行って\(Y(p,q) \)を求めることができる。したがって、\(Y(p,q) \)を得るためには、

数式7

\[N = \sum_{n=0}^{N_w} N_{x} \]

個の複素数積算が必要となるので、全体DFTを行う場合に必要な演算量は\(N \)点に比べて複素数積算が減少される。

【0057】

ここで、\(N \)、\(N_{x1} \)及び\(N_{C} \)が2の形態、すなわち2の指数形態の場合には、FFTを適用できる。このように全体副搬送波でない特定副搬送波に対して全体FFT演算を行わないでFFT演算の一部だけを行うことをpartial FFTと言い、関心のある特定副搬送波がcombシンボルからなる場合にFFT演算の減少を最適化させることができる。

【0058】

FFT演算にはDIF(Decimation In Frequency)アルゴリズムとDIT(Decimation In time)アルゴリズムが2の形態がある。図5及び図6各々は前記数式3をradix-2 DIF及びradix-2 DITアルゴリズムのバタフライで表現したradix-2バタフライの基本構成を表している。すなわち、図5はradix-2 DIFバタフライ部の構成図であり、図6はradix-2 DITバタフライ部の構成図である。

【0059】

FFT部233及びIFFT部214を構成するバタフライ部は、上記数式3の算術動作を行う構成要素であって、FFT部のバタフライ演算は\(r \cdot \)ポイントのデータ演算により行われる。ここで、\(r \)は奇数(\(\text{radix} \))である。\(N \cdot \)ポイントFFT部は\(\log_{2} N \)ステージのため各ステージ毎に\(N / r \)個のバタフライ部を含む。1つのバタフライステージの演算結果は次のバタフライステージへの入力となる。

【0060】

図7はDIFアルゴリズムが適用されたFFT部の信号フローチャートであり、図8はDITアルゴリズムが適用されたFFT部の信号フローチャートである。図7と図8とは、\(N \)が\(32 \)例え、\(N = 8, N = 4 \)である場合(32・ポイント)にDIFとDITの各アルゴリズムが適用されたradix-2 FFT部233での信号フローチャートを示している。図に示されているように、32・ポイントFFT部バタフライ演算は\(\log_{2} 32 \)個のステージにより行われ、各ステージは\(16 (= 32/2) \)個のバタフライ
イ部からなる。図7では図5のDIFパタフライ部、図8では図6のDITパタフライ部からなったradix-2 FFT部233が各々示されている。

【0061】
無線信号受信部232を介して受信されたcombシンボル、すなわちOFDMシンボルの時間領域サンプル値y(n)が、図7に示されたFFT部233の入力部60に入力される順に順次入力される。すなわち、図7では0から31に該当するn値のy(n)がFFT部233の入力部60に入力される。入力部60に入力された信号は、当該入力端子に入力される信号y(n)のn、すなわち時間インデックスを意味し、入力部アドレスと一致する。入力される信号y(n)は、各ステージでパタフライ演算が行われ、最後のステージでパタフライ演算が行われた後の、周波数領域信号Y(k)がFFT部233の出力メモリ61に格納される。

【0062】
図の出力メモリ61に表示された番号は、0から順次に配置された出力メモリ61のアドレスをビット逆転(bit reverse)させた値であって、すなわち周波数インデックスを意味する。

【0063】
図7に示されたDIF FFT部233の信号流れにおいて、出力メモリ61に格納された周波数領域の信号Y(k)のうち、メモリアドレスに基づいて所定基準によってグループ化したY(k)が副振波グループとなる。ある副振波グループが格納されたメモリアドレスに最も関連したメモリアドレスに格納された副振波グループを関連グループと定義する。図7の場合、メモリアドレスの順にグループ化されたY(k)集合が副振波グループとなる。

【0064】
この時、出力メモリ61に格納された周波数領域信号Y(k)は、周波数領域65でcombシンボルを構成する副振波の周波数で値を有するように、出力メモリ61アドレスのビット逆転された順にマッピングされる。したがって、出力メモリ61に格納される副振波グループの周波数領域信号Y(k)は、combシンボルを構成する副振波信号となる。

【0065】
図7の一実施の形態(32・ポイントFFT部)において、出力メモリ61のアドレスがラジックスからなった場合、出力メモリ61のアドレスとビット逆転されてcombシンボルを構成する副振波

【8】

\[f_c + \left(\frac{k}{N} \Delta f \right) \text{[Hz]} \]
<table>
<thead>
<tr>
<th>出力メモリ(61)アドレス (10進数)</th>
<th>出力メモリ(61)アドレス (2進数)</th>
<th>ビット逆転されたk(2進数)</th>
<th>ビット逆転されたk(10進数)</th>
<th>Y(k)の周波数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000</td>
<td>00000</td>
<td>0</td>
<td>(f_c + (0 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>1</td>
<td>00001</td>
<td>10000</td>
<td>16</td>
<td>(f_c + (16 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>2</td>
<td>00010</td>
<td>01000</td>
<td>8</td>
<td>(f_c + (8 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>3</td>
<td>00011</td>
<td>11000</td>
<td>24</td>
<td>(f_c + (24 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>4</td>
<td>00100</td>
<td>00100</td>
<td>4</td>
<td>(f_c + (4 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>5</td>
<td>00101</td>
<td>10100</td>
<td>20</td>
<td>(f_c + (20 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>6</td>
<td>01110</td>
<td>01100</td>
<td>12</td>
<td>(f_c + (12 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>7</td>
<td>01111</td>
<td>11100</td>
<td>28</td>
<td>(f_c + (28 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>8</td>
<td>10000</td>
<td>00010</td>
<td>2</td>
<td>(f_c + (2 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>9</td>
<td>10001</td>
<td>10010</td>
<td>18</td>
<td>(f_c + (18 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>10</td>
<td>10010</td>
<td>01010</td>
<td>10</td>
<td>(f_c + (10 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>11</td>
<td>10111</td>
<td>11010</td>
<td>26</td>
<td>(f_c + (26 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>12</td>
<td>11100</td>
<td>00110</td>
<td>6</td>
<td>(f_c + (6 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>13</td>
<td>11101</td>
<td>10110</td>
<td>22</td>
<td>(f_c + (22 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>14</td>
<td>11110</td>
<td>01110</td>
<td>14</td>
<td>(f_c + (14 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>15</td>
<td>11111</td>
<td>11110</td>
<td>30</td>
<td>(f_c + (30 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
<td>00001</td>
<td>1</td>
<td>(f_c + (1 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>10001</td>
<td>17</td>
<td>(f_c + (17 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>18</td>
<td>10010</td>
<td>01001</td>
<td>9</td>
<td>(f_c + (9 - \frac{N}{2}) \times \Delta f)</td>
</tr>
<tr>
<td>19</td>
<td>10011</td>
<td>11001</td>
<td>25</td>
<td>(f_c + (25 - \frac{N}{2}) \times \Delta f)</td>
</tr>
</tbody>
</table>
[0066]
図7に示されているように、出力メモリ61に格納された周波数領域信号Y(k)は、4個をセットとして副振波グループa、副振波グループb、副振波グループc、...、副振波グループhまでで表示されている。この時、出力メモリ61のアドレスは、上記記憶1に表わされた通り、順次的に0、1、2、3、...、31であるが、ビット逆転された順序は前記表1に表わされた通り0、16、8、24、...、31となり、副振波グループaが表す実際周波数領域信号は、Y(0)、Y(16)、Y(8)及びY(24)となる。

【0067】
同様に、副振波グループbが表す実際周波数領域信号は、Y(4)、Y(20)、Y(12)及びY(28)となり、一般に副振波グループiに該当する値は、combシンボルの周波数領域信号に対応される。すなわち、図7に示されているように、副振波グループaに属する値Y(k)は、周波数領域65でcombシンボル64を構成する副振波群集合に対応される。

【0068】
一方、図8に示すDIT FFT部では、入力部70に表記された順序70の通り、時間領域信号y(n)が順次入力される。すなわち、図8では入力部70アドレス値0から31がビット逆転されたnのy(n)値がFFT部233の入力部70に入力される。入力部70に表示された番号は、当該入力端子に入力されるy(n)のn、すなわち時間インデックスを意味する。図7の場合はもう少しビット逆転されている。

【0069】
図8の一実施の形態(32・ポイントFFT部)において、入力部70のアドレスが5ビットかたった場合、入力部70のアドレスとビット逆転されてcombシンボルを構成する副振波y(n)とのマッピング関係は、次の表2のようである。
<table>
<thead>
<tr>
<th>入力部(70)アドレス (10進数)</th>
<th>入力部(70)アドレス (2進数)</th>
<th>ビット逆転されたn(2進数)</th>
<th>ビット逆転されたn(10進数)</th>
<th>y(n)のサンプリングポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000</td>
<td>00000</td>
<td>0</td>
<td>0*T_s</td>
</tr>
<tr>
<td>1</td>
<td>00001</td>
<td>10000</td>
<td>16</td>
<td>16*T_s</td>
</tr>
<tr>
<td>2</td>
<td>00010</td>
<td>01000</td>
<td>8</td>
<td>8*T_s</td>
</tr>
<tr>
<td>3</td>
<td>00011</td>
<td>11000</td>
<td>24</td>
<td>24*T_s</td>
</tr>
<tr>
<td>4</td>
<td>00100</td>
<td>00100</td>
<td>4</td>
<td>4*T_s</td>
</tr>
<tr>
<td>5</td>
<td>00101</td>
<td>10100</td>
<td>20</td>
<td>20*T_s</td>
</tr>
<tr>
<td>6</td>
<td>00110</td>
<td>01100</td>
<td>12</td>
<td>12*T_s</td>
</tr>
<tr>
<td>7</td>
<td>00111</td>
<td>11100</td>
<td>28</td>
<td>28*T_s</td>
</tr>
<tr>
<td>8</td>
<td>01000</td>
<td>00010</td>
<td>2</td>
<td>2*T_s</td>
</tr>
<tr>
<td>9</td>
<td>01001</td>
<td>10010</td>
<td>18</td>
<td>18*T_s</td>
</tr>
<tr>
<td>10</td>
<td>01010</td>
<td>01010</td>
<td>10</td>
<td>10*T_s</td>
</tr>
<tr>
<td>11</td>
<td>01011</td>
<td>11010</td>
<td>26</td>
<td>26*T_s</td>
</tr>
<tr>
<td>12</td>
<td>01100</td>
<td>00110</td>
<td>6</td>
<td>6*T_s</td>
</tr>
<tr>
<td>13</td>
<td>01101</td>
<td>10110</td>
<td>22</td>
<td>22*T_s</td>
</tr>
<tr>
<td>14</td>
<td>01110</td>
<td>01110</td>
<td>14</td>
<td>14*T_s</td>
</tr>
<tr>
<td>15</td>
<td>01111</td>
<td>11110</td>
<td>30</td>
<td>30*T_s</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
<td>00001</td>
<td>1</td>
<td>1*T_s</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>10001</td>
<td>17</td>
<td>17*T_s</td>
</tr>
<tr>
<td>18</td>
<td>10010</td>
<td>01001</td>
<td>9</td>
<td>9*T_s</td>
</tr>
<tr>
<td>19</td>
<td>10011</td>
<td>11001</td>
<td>25</td>
<td>25*T_s</td>
</tr>
<tr>
<td>20</td>
<td>10100</td>
<td>00101</td>
<td>5</td>
<td>5*T_s</td>
</tr>
<tr>
<td>21</td>
<td>10101</td>
<td>10101</td>
<td>21</td>
<td>21*T<sub>s</sub></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>22</td>
<td>10110</td>
<td>01101</td>
<td>13</td>
<td>13*T<sub>s</sub></td>
</tr>
<tr>
<td>23</td>
<td>10111</td>
<td>11101</td>
<td>29</td>
<td>29*T<sub>s</sub></td>
</tr>
<tr>
<td>24</td>
<td>11000</td>
<td>00011</td>
<td>3</td>
<td>3*T<sub>s</sub></td>
</tr>
<tr>
<td>25</td>
<td>11001</td>
<td>10011</td>
<td>19</td>
<td>19*T<sub>s</sub></td>
</tr>
<tr>
<td>26</td>
<td>11010</td>
<td>01011</td>
<td>11</td>
<td>11*T<sub>s</sub></td>
</tr>
<tr>
<td>27</td>
<td>11011</td>
<td>11011</td>
<td>27</td>
<td>27*T<sub>s</sub></td>
</tr>
<tr>
<td>28</td>
<td>11100</td>
<td>00111</td>
<td>7</td>
<td>7*T<sub>s</sub></td>
</tr>
<tr>
<td>29</td>
<td>11101</td>
<td>10111</td>
<td>23</td>
<td>23*T<sub>s</sub></td>
</tr>
<tr>
<td>30</td>
<td>11110</td>
<td>01111</td>
<td>15</td>
<td>15*T<sub>s</sub></td>
</tr>
<tr>
<td>31</td>
<td>11111</td>
<td>11111</td>
<td>31</td>
<td>31*T<sub>s</sub></td>
</tr>
</tbody>
</table>

【0070】
FFT部２３３の入力部７０に入力された信号Y(n)は、各ステージでパラフライ演算が行われ、最後のステージでパラフライ演算が行われた後、周波数領域信号Y(k)がFFT部２３３の出力メモリ７１に格納される。図において、出力メモリ７１に表示された番号は、出力メモリ７１のアドレスであって、kすなわち周波数インデックスを意味する。図7の場合とは異なりビット逆転されていない。

【0071】
すなわち、図8に示されているように、DIFアルゴリズムが適用されたFFT部２３３の信号流れでは、出力メモリ７１に格納された周波数領域信号Y(k)が実際周波数帯域にビット逆転させる順に対応する。したがって、DIFアルゴリズムが適用された図8の信号流れでは、出力メモリ７１に格納された値Y(k)として一定間隔(N_c)で離隔されたY(k)集合群が副搬送波グループとなる。

【0072】
すなわち、図8に示されたDIF FFT部２３３の信号流れにおいて、出力メモリ７１に格納された周波数領域の信号Y(k)のインデックスkをビット逆転させた状態で所定の数をセットして副搬送波グループと定義し、ある副搬送波グループが格納されたメモリアドレスのビット逆転させた値に最も隣接したビット逆転値を有するメモリアドレスに格納された副搬送波グループが当該副搬送波グループの隣接グループとなる。

【0073】
例えば、図8の出力メモリ７１に格納された周波数領域の信号Y(0), Y(8), Y(16)及びY(24)のインデックスkまたは出力メモリアドレスをビット逆転させた値は、各々0, 2, 1及び3となり、この4個の副搬送波をグループaと定義した。また図8の出力メモリ７１に格納された周波数領域の信号Y4, Y20, Y12及びY28のインデックスkまたは出力メモリアドレスをビット逆転させた値は、各々4, 5, 6及び7となり、この4個の副搬送波からなるグループは、グループaの隣接グループの1つとなる。

【0074】
結果、図5のDIFアルゴリズムが適用された信号流れ(図7)や図6のDIFアルゴリズム
ズムが適用された信号流れ（図8）の場合は全て、FFT部233の出力メモリ71に格納された1つの副搬送波グループY(k)は、実際周波数帯域で1つのcombシンボルを構成する副搬送波を示す。【0075】

図7と図8において、副搬送波グループaに該当する副搬送波信号Y(0)、Y(8)、Y(16)及びY(24)を算出するために演算されなければならないバタフライ・出力地点に円が示されている。図7及び図8に示されているように、本発明の実施の形態によれば、combシンボルa.4を獲得するために、全体FFT部演算のうち一部だけを演算すれば良いので、少ない演算量で該当副搬送波の信号を求めることができ、電力消費を大きく減少させることができる。【0076】

ここで受信システム230は、事前に副搬送波グループの属性（信号の開始点、周波数移動パターン、副搬送波グループのサイズなど）を介して自分が獲得しなければならない副搬送波グループを示すために、副搬送波信号Y(k)を算出するために演算されなければならないバタフライ・出力ポイントを事前に決めることができ、したがって、図7及び図8に示されているようにバタフライ演算が行われる。【0077】

したがって、受信システムにおいて自己に割り当てられたcombシンボルの副搬送波信号を複元するのにpartial FFTを利用することにより、演算量の減少効果を得ることができる。【0078】

一方、送信システム210においてOFDM送信信号を生成するためにはIFFT部214でIFFT演算を行うが、副搬送波をcombシンボルで構成して割り当てるようにすれば、IFFT部の演算量を減少させることができる。【0079】

一般に、IFFT部演算はFFT部により行うが、演算方法は、FFT部の入力端60、70に周波数領域の信号X(k)の実数部と虚数部ともに変える値を入力し、各ステージ別にバタフライ演算を行なって、出力メモリ61、71から得られる出力値の実数部と虚数部をさらに変える、時間領域の信号x(n)が得られる。【0080】

図6のradix-2 DIFアルゴリズムを使用してIFFT部演算を行う場合の実施の形態が、図9に示されている。【0081】

図9は、DIFアルゴリズムが適用されたIFFT部の信号フローチャートであって、図9に示されているように、IFFT部214の入力端80にcombシンボルa.84を構成する副搬送波信号X(0)、X(8)、X(16)及びX(24)に該当する端子(0、8、16及び24番アドレスを有する端子)だけに周波数領域信号X(0)、X(16)、X(8)及びX(24)が入力され、余りの端子には、ナUL(0)が入力される。出力信号として時間領域での副搬送波信号X(0)のないしX(31)を算出するために演算されなければならないバタフライ・出力点が灰色円で表示されている。図9において、バタフライの2入力端子に全て0が入力される場合、バタフライ演算を行わないようにすれば、図9の入出力点のようにバタフライ演算が行われる。【0082】

ここでcombシンボルa.84を構成する副搬送波信号X(0)、X(8)、X(16)及びX(24)は、図2の送信システム210から送信されるデータシーケンスが実際部211を介して複素数値にマッピングされ、副搬送波割り当てに部212を介して当該データシーケンスの送信に応じて4個の副搬送波からなるcombシンボルを割り当て、各搬送波信号に割り当てられ、搬送波数移動部213を介して前記副搬送波が時間スロットに沿って与えられたパターンにより周波数移動されるIFFT部214に入力される、実施の形態の信号である。
【0083】
combシンボルを周波数衝突なしで移動局に割り当てる方法は後述する。
【0084】
図8は、時間領域信号y(n)が入力されてcombシンボルaの4個の周波数領域信号Y(k)が出力されることを示しており、これに対し図9は、combシンボルaに該当する4個の周波数領域信号Y(k)が入力されて、時間領域信号x(n)が出力メモリS1に
出力されることを示している。
【0085】
図8と図9とを比較すれば、演算量が同一であることが分かれる。IFFT部計算を行う場合、パラメータの2つの入力値が全て0である場合には、パラメータ演算をせず、入力値が全て0でない場合だけにパラメータ演算を行うので、受信システム230においてpartial FFTを適用する場合と同じ演算量で送信システム210のIFFT部演算を行うことができる。
【0086】
上記の図8のDIT FFT部の演算から図9のDIF IFFT部の演算が容易に理
解できることと同時に、DITアルゴリズムが適用されたIFFT部の信号流れは、図7のDIF FFT部演算から容易に理解できるので、これ以上の説明は省略する。
【0087】
したがって、combシンボルに副搬送波を割り当てれば、送信システム210で少な
い演算量でIFFT部演算を行うことができるため、演算量を減少させることができる。
【0088】
一方、本発明の一実施の形態に係るcombシンボルの周波数跳躍は、従来のクラスタ
方式の周波数跳躍とは異なり、副搬送波グループ間の周波数跳躍によって、周波数帯域ではcombシンボルの周波数オフセットが変わる。例えば、図7において、最初にcombシンボルの副搬送波としてグループaが割り当てられ、隣接副搬送波グループであるグループbに周波数跳躍が行われる場合、周波数帯域ではcombシンボルaからcombシンボルbに周波数オフセットが変更される。
【0089】
このように本発明の一実施の形態によれば、副搬送波グループ間に周波数跳躍が行われるため、互いに異なる副搬送波グループへの跳躍は以前時間スロットから割り当てられた副搬送波とは異なる副搬送波が割り当てられることを常に保障する。
【0090】
図10は、本発明の一実施の形態によって1つを移動局に割り当てられたcombシン
ボルが、隣接副搬送波グループに周波数跳躍を行うパターンを示すための図であって、図11は、本発明の一実施の形態によって1つを移動局に割り当てられたcombシンボルがランダムに周波数跳躍を行うパターンを示すための図である。図10では、ある1つのcombシンボルの副搬送波グループが隣接副搬送波グループに周波数跳躍を行うパターンを示しており。図11では、combシンボルの副搬送波グループがランダムに周波数跳躍を行うパターンを示している。ここでランダム一週波数跳躍パターンには、
同じ周波数オフセットを有するようとする周波数跳躍パターンも含まれる。同じ周波数オフ
セットを有する周波数跳躍パターンは、実質的に周波数帯域で周波数跳躍を行わない場
合で現れる。これは時間に応じて独立的な周波数オフセットを持ってすることによって可能
となる。
【0091】
図に示されているように、副搬送波グループ間の周波数跳躍によって、周波数帯域ではcombシンボルの周波数オフセットが変わる。図10と図11の左側に副搬送波グルー
プY(k)と表示されたボックスは、図7で説明した副搬送波グループa、副搬送波グループ
b、副搬送波グループc、...63を示す。
【0092】
図10及び図11に示されているように、本発明の一実施の形態によって隣接した副搬送
送波グループが構成するcombシンボルに周波数選択を行っていても、実質的に周波数帯域では隠蔽した周波数のcombシンボルに周波数選択を行うことではなく、複数のパターンで周波数選択を行うことになり、これは周波数選択にともない周波数ダイバーシティ効果を上昇させるのに肯定的な要因として作用する。

【0093】
一方、移動局の送信率が増加すれば、信号を送信するために要求される副搬送波グループ数が増加するので、combシンボルが増加に割り当てられて副搬送波間の隙間が減少する。図12では、このような送信率の増加に応じてcombシンボルが増加に割り当てられ、周波数帯域で副搬送波の配置が変化する過程を示している。

【0094】
図12は、本発明の一実施の形態によってcombシンボルが増加に割り当てられる場合における周波数帯域で副搬送波配置の変化を説明するための図であって、副搬送波グループaが割り当てられた場合、combシンボルaのパターン90と、副搬送波グループaに追加に副搬送波グループbが割り当てられた場合、combシンボルa及びcombシンボル91と、副搬送波グループa、b及びcが割り当てられた場合、combシンボルa、combシンボルb及びcombシンボルcが割り当てられたパターン92と、副搬送波グループa、b、c及びdが割り当てられた場合、combシンボルa、combシンボルb、combシンボルc及びcombシンボルdが割り当てられたパターン93を各々示している。

【0095】
すなわち、最初に割り当てられた副搬送波グループが副搬送波グループaであり、送信率増加に比例して副搬送波グループb、c、d、e、f、g、h、i、j、k、l、m、n、o、p、q、r、s、t、u、v、w、x、y、zが割り当てられる場合、combシンボルの副搬送波間の隙間は減少する。

【0096】
この時、1つの移動局に複数のcombシンボルが割り当てられる場合、当該複数のcombシンボルを構成する全体副搬送波の間隔は、もう等間隔でないこともあり得るし、これは複数のcombシンボルが有する周波数オフセット依存現象である。

【0097】
また、最初に使用したcombグループがcombシンボルaではなく他の周波数オフセット有するcombシンボルであれば、送信率増加に応じてcombシンボルaが割り当てられることによって変化する副搬送波割り当てパターンは、図12の場合とは異なるであろう。すなわち、最初に割り当てられたcombシンボルがcombシンボルaであり、順にcombシンボルb、combシンボルc、combシンボルd、combシンボルaが追加に割り当てられる場合の副搬送波割り当てパターンは、明確に図12の場合とは異なる。

【0098】
図13は、本発明の一実施の形態によってDIF方式のFFT部から隠蔽した副搬送波グループを算出するために必要なパラメータ部の演算を説明するための図であり、図14は、DIF方式のFFT部から隠蔽していない副搬送波グループを算出するために必要なパラメータ部の演算を説明するための図である。図13と図14は、2倍の送信率を持つために同じサイズを有する2つのcombシンボルを1つの移動局が割り当てられて使用する一実施の形態であって、FFT部233での信号フローチャートを示している。

【0099】
図13は、本発明によって隠蔽した副搬送波グループのcombシンボルを割り当てる場合を示している。これに対し、図14は、隠蔽していない副搬送波グループのcombシンボルを割り当てる場合を示すものであって、図13の本発明の一実施の形態によって隠蔽した副搬送波グループのcombシンボルを割り当てる場合の優位性を比較説明するための図である。

【0100】
図13及び図14において、点線で満たされたボックス122、132は、追加割り当
てられたcombシンボルにより追加に必要となる演算量を示す。
【0101】
図13に示されているように、副搬送波グループa120のcombシンボルと隣接した副搬送波グループb121のcombシンボルを1つの移動局に割り当てるようにならば、少ない演算量122だけが追加に必要となることが分かる。この場合、隣接した副搬送波グループに割り当てるcombシンボルa123及びcombシンボルb124の副搬送波は、周波数領域で隣接してなく均一間隔で隔離されて配置されている。
【0102】
これに対し図14は、隣接しない副搬送波グループa130のcombシンボルと副搬送波グループe131のcombシンボルを1つの移動局に割り当てた場合を示している。図14に示されているように、追加の副搬送波グループe131信号を求めるためのパターン演算増加量132が図13での演算増加量122より大きいことが分かる。
【0103】
したがって、送信率の増加により割り当てられる副搬送波グループのcombシンボルを増加させる場合、隣接した副搬送波グループのcombシンボルを追加に割り当てれば、隣接しない副搬送波グループのcombシンボルを割り当て場合より演算量を減少させることができる。
【0104】
図15は、本発明の一実施例の形態によって互いに異なるサイズの副搬送波グループからなるcombシンボル群がセル内の複数の移動局に割り当てられて、同じサイズの隣接した副搬送波グループに周波数跳躍を行うパターンを説明するための図である。1つの副搬送波グループのcombシンボルが隣接副搬送波グループのcombシンボルに周波数跳躍を行うパターンの例を示している。図において、縦軸は時間スロットを示し、横軸は副搬送波グループを示す。図1Aの場合は異なり、縦軸は副搬送波グループを示していることに注意して図を理解しなければならない。
【0105】
図に示されているように、互いに異なる移動局に異なるcombシンボルを割り当てて、セル内の全ての移動局に同じパターンで周波数跳躍を行うようにすれば、この副搬送波グループは、全て隣接combシンボルに周波数跳躍を行うため、常に重ならないように周波数跳躍を行う。したがって、セル内の移動局間の干渉を防止できる。
【0106】
図15は、送信されるデータの種類に応じて割り当てられたcombシンボルを構成する副搬送波の数が異なる場合を例として示している。図において、少ない数(例えば、4個の副搬送波が隣接する副搬送波グループをa1、b1、c1などであり、多くの数(例えば、6、4個の副搬送波が隣接する副搬送波グループがa2、b2、c2などである。combシンボルを構成する副搬送波の数をcombシンボルのサイズといえ、音声信号や制御信号のような短いパケットのデータ信号に対しては小さいサイズのcombシンボルが割り当てられ、高い送信率を要求する信号に対しては、大きいサイズのcombシンボルが割り当てられることが適切である。
【0107】
この場合、小さなサイズのcombシンボルを構成する副搬送波グループ(例えば、4個)a1、b1、c1などを1つの副搬送波グループ群に設定し、大きなサイズのcombシンボルを構成する副搬送波グループ(例えば、6、4個)a2、b2、c2をさらに他の副搬送波グループ群に設定して、combシンボルの割り当て及び周波数跳躍パターンを決定する過程で同じサイズを有する副搬送波グループ群内だけで割り当て及び周波数跳躍を行うことによって、partial FFT演算量を最小化できる。
【0108】
送信されるデータの属性に応じてcombシンボルのサイズをどのように決定するかはシステム条件、サービスの種類などを考慮しなければならないが、システム設計者によっ
一方、本発明の一実施の形態によれば、同じサイズのcombシンボル間、すなわち取り当てられたcombシンボルを構成する副送波グループの群内だけで周波数変調を行おう、すなわち、同じサイズであるが周波数オフセットを異なるようなcombシンボルに周波数変調を行い、これに伴いpartial FFT演算量を最小化できる。

図16Aないし図16Dは、本発明の一実施の形態によって1つの副送波グループからなるcombシンボルの周波数変調パターンに応じるpartial FFT演算過程を説明するための図であり、図17Aないし図17D及び図18Aないし図18Dは、2つのcombシンボルを割り当てられた場合、周波数変調パターンに応じるpartial FFT演算過程を説明するための図であって、2以上のcombシンボルが1つの移動局に割り当てられた場合を例示的に説明するための図である。

図16は、副送波グループのサイズが4ずつある、combシンボルを構成する副送波の数が4である時、周波数変調パターン（副送波グループa→b→c→dの順に変調）に応じて1つのアルゴリズムが適用されたFFT部の信号フローチャートであって、時間スロットに沿って図16A、図16B、図16C及び図16Dに区分した図である。

図17は、送信データを増加により同じサイズを有する2個のcombシンボルが割り当てられた場合、周波数変調パターン（副送波グループa→b→c→d→eの順に変調）に応じて1つのアルゴリズムが適用されたFFT部の信号フローチャートであって、時間スロットに沿って図17A、図17B、図17C及び図17Dに区分した図である。

このようにcombシンボルを追加に割り当てる場合、周波数変調の最小単位を最初割り当てられたcombシンボルのサイズに設定することによって、周波数変調によって副送波の間隔を変化させてFFT演算量を少しさせ、かつ周波数ダイバーシティを増加させることができる。

なお、本発明の一実施の形態によれば、図18で示したように、周波数変調の最小単位を2つ副送波グループの和のサイズとする（副送波グループa→b→c→d→eの順に変調）すなわち、1つの移動局に総1個の副送波グループからなるcombシンボルが割り当てられた場合、当該combシンボルの周波数変調の最小単位は、1個の副送波グループを構成する副送波の個数に設定される。

図18に示すように、combシンボルを追加に割り当てで周波数変調を行う場合、時間スロットに沿って演算が必要なバタフライの数、すなわち演算量が同一であることが分かる。この時、上記したように、副送波グループに該当する計算副送波配置はcombシンボルに基づく。

一般に、partial FFT演算効率を上げるため、割り当てられた副送波グループの最大数単位で周波数変調を行うことを数式で表すと、数式6のようになる。

数式6
\[G = (g_n + P(1) \times i) \mod N_c \]
\[G \quad : \] 時間スロット1でのグループ番号
\[P(1) \quad : \] 周波数変調パターン番数
\[i \quad : \] 割り当てられたグループの数
最初時間スロットにおけるグループ番号

例えば、図18において、グループα、グループβ、グループγなどが横方向にグループ0、グループ1、グループ2などのように対応されるグループ番号で割り当てられており、最初割り当てられた副搬送波グループの番号をgαとすれば、上記数式(6)に表わされた通り、周波数識別パターン関数P(1)に応じて番号Gの副搬送波グループで周波数識別を行うものの、周波数識別単位は、移動局に割り当てられた副搬送波グループの和のサイズとなる。

一方、上述したように、combシンボルの割り当て及び周波数識別パターンを決定する過程において同じサイズを有する副搬送波グループ群内だけで割り当て及び周波数識別を行うもの、割り当てられた副搬送波グループの最大数単位で周波数識別を行うことにによって、partial FFT演算を最小化すると同時に割り当てられた副搬送波群の間隔を変化させることによって、周波数ダイバーシティ効果を増大させることができる。

図19は、図18の周波数識別を周波数帯域で示したものであって、図19は、本発明の一実施の形態によってcombシンボルが追加に割り当てられて2つの副搬送波グループが周波数識別を行う場合、副搬送波帯域で副搬送波の間隔を変化を説明するための図である。

すなわち、時間スロット1（図18A）から割り当てられた副搬送波は図19の参照番号3002と同じで、時間スロット2（図18B）では参照番号301、時間スロット3（図18C）では参照番号302、時間スロット4（図18D）では参照番号303と同じである。

図19に示されているように、図18に示された周波数識別の場合、副搬送波間の間隔が変わる場合がある。このように周波数識別に応じて副搬送波間の間隔が変わるようにして、周波数ダイバーシティ効果をさらに得ることができる。

図20は、本発明の一実施の形態によって4個の副搬送波グループからなるcombシンボルがセル内の複数の移動局に割り当てられてランダムに周波数識別を行うパターンの例を説明するための図であって、送信量増加により図に示されたように臨接した副搬送波グループを追加に割り当ててcombシンボルを構成すれば、ランダムに周波数識別を行っても上記で説明した理由でpartial FFT演算上の利点を良く生かすことができる。

一方、図20では、図15で説明された通り、同一セルの副搬送波からなる副搬送波グループ群を設定して、combシンボル割り当て及び周波数識別パターン決定過程で割り当てようとする同一サイズを有する副搬送波グループ群内で割り当て及び周波数識別が行われる場合が示されている。

すなわち、参照番号182及び183のサイズを有するcombシンボルを割り当て、周波数識別を行おうとする場合、a1, b1, c1及びd1からなる副搬送波グループ群内だけでcombシンボル割り当て及び周波数識別が行われ、参照番号180及び181のサイズを有するcombシンボルを割り当て、周波数識別を行おうとする場合、a2, b2, c2及びd2からなる副搬送波グループ群内だけでcombシンボル割り当て及び周波数識別が行われることである。

一方、全ての移動局、周波数識別パターンを有するようにすれば、同一セル内の全ての移動局が同じ周波数識別パターンを有するようにすれば、セル内の移動局間の干
波除去でき、これに対しcombシンボルの周波数頻脈パターンを機能し、また同様に差し
異なるようにすることによって、他の周波数を含むよう考慮が必要とし、セル間の干渉を平
均化させることができる。すなわち、ある1つの時間スロットでは隣接セルが偶に同じ
周波数を使用することができるが、セルごとに互いに異なる周波数跳躍パターンを有する
ので、セル間の干渉を移動圏に均等化させる効果をもたらし、1つの移動圏に作用する
干渉の大きさを減少させることができる。
【0127】
図21はセル配置図であり、図22Aないし図22G及び図23Aないし図23Gは、
本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するた
めの図である。図21のようにセル間環境で各セルごとに互いに異なる周波数跳躍パターン
を使用する場合、適切な周波数跳躍パターンの選択例が図22Aないし図22G及び図
23Aないし図23Gに各々示されている。
【0128】
図22と図23において、y軸の最も上側の副帯送波グループが副帯送波グループaを
表し、下方の順に副帯送波グループb、c、d、e、f、g、h、i、j、k、l、m、
n、o、pを順に表し、x軸は時間スロットを表す。
【0129】
図22AはセルAに設定された周波数跳躍パターンである。副帯送波グループaから
b、c、d、e、f、g、h、i、j、k、l、m、n、o、pを順に設定された周
波数跳躍パターンである。副帯送波グループaからc、e、g、i、k、m、pの
順で、すなわち1つの副帯送波グループを飛ばして隣接した副帯送波グループに跳躍するパ
ターンである。図22Cないし図22Gでは副帯送波グループを飛ばして周波数跳躍を行
うパターンが示されている。すなわち、跳躍方向は同じで跳躍間隔を異なるようすること
によって、互いに異なる周波数跳躍パターンをセルA（図22A）ないしセルG（図22
G）に設定する。
【0130】
図23において、セルAに設定された周波数跳躍パターン（図23A）、セルCに設定さ
れた周波数跳躍パターン（図23C）、セルEに設定された周波数跳躍パターン（図23E）
及びセルGに設定された周波数跳躍パターン（図23G）は、各々セルAに設定された周波
数跳躍パターン（図22A）、セルBに設定された周波数跳躍パターン（図22B）、セルC
に設定された周波数跳躍パターン（図22C）及びセルDに設定された周波数跳躍パターン
（図22D）と同一である。
【0131】
反面、セルBに設定された周波数跳躍パターン（図22B）、に逆順の隣接副帯送波グループ
である副帯送波グループpから逆順の隣接副帯送波グループに跳躍するパターンであり、
セルDに設定された周波数跳躍パターン（図23D）は、副帯送波グループpから逆順に1
つ飛ばして、隣接した副帯送波グループに跳躍するパターンである。すなわち、シフト間
隔を異なるようにし方向も変えたことによって、互いに異なる周波数跳躍パターンを作っ
て割り当てた。
【0132】
このような周波数跳躍パターンを使用する場合、各セル間で同じ周波数を使用する確率
を最小化できるため、セル間の干渉を減少させることができる。
【0133】
例えば、図22Aの周波数跳躍パターン1及び図22Bの周波数跳躍パターン2を述べ
ると、次の通りである。但し、セルAとBの2つのみを考える。周波数跳躍パターン
1とパターン2は、時間スロットに沿ってシフトする方向は同じであるが、パターン1は
隣接グループにシフトする。パターン2は1つのグループを飛ばして跳躍するという点が異
なる。
【0134】
全体副搬送波グループの数をN_g、周波数調調周波数をN_hとすれば、1つの週波数調調周波数の間で使用できる副搬送波グループの数は、$N_g \times N_h$個となる。各ユーザが1つの副搬送波グループのみを割り当てられるとすれば、1つのセルにおいて多重接続できるユーザの数はN_gとなる。

【0135】
最初時間スロットにおいて、y軸（副搬送波グループ）に最も上位に位置する副搬送波グループをグループ0と定義し、下方の順にグループ1、2、3、\ldots、$N_g - 1$と定義する。すなわち、全体グループをグループ0からグループ$N_g - 1$まで定義する。そして最初時間スロットにおいて、グループuを割り当てられるユーザをユーザuと定義する。

【0136】
周波数調調パターン1を使用するセルAにはN_g名のユーザがあり、周波数調調パターン2を使用するセルBには最初時間スロットにおいて割り当てられた副搬送波グループがグループ0である1人のユーザだけがいる場合には、セルBによってセルAに干渉として作用するグループの数は、周波数調調パターン1周期の間N_hとなる。セルAには全ての副搬送波グループが全部使われているため、セルBが干渉される副搬送波グループの数だけが互いに重なるようになるためである。セルAの各ユーザに干渉として作用する副搬送波グループの数は平均的でN_g / N_hである。

【0137】
しかし、干渉として作用するグループの数は整数であるため、N_gとN_hによってセルAの各ユーザごとに干渉として作用するグループの数は少し変わることができ、すなわち、セルAの各ユーザとセルBの1人のユーザとの間に互いに重なる副搬送波グループの数は、N_gとN_hによって変わる。したがって、セルBにおいて周波数調調パターン2を使用し、1人のユーザが最初時間スロットにおいて割り当てられた副搬送波グループがグループ0である場合、セルAのユーザuに重なる副搬送波グループの数は、数式7の条件を満たす時、$(i + 1)$回重なる。

数式7

\[
1 \leq u < N_h \leq (i + 1) \leq N_g + u
\]

\[
i = 0, 1, 2, \ldots
\]

\[
u = 0, 1, 2, \ldots, N_g - 1
\]

【0138】
図23の周波数調調パターンを例にして説明すれば次の通りである。セルAには図23\ Aの周波数調調パターン1を使用し、セルBには図23\ Bの周波数調調パターン2を使用し、余りの条件は上記と同じケースに対して考慮する。

【0139】
周波数調調パターン1と2とは、時間スロットに沿ってシフトする方向が異なる。セルAにはN_gのユーザがあり、セルBには最初時間スロットにおいて割り当てられる副搬送波グループがグループ$N_g - 1$である1人のユーザがいるとすれば、周波数調調の一周期の間、セルBの1人のユーザによってセルAに干渉として作用するグループの数はN_hとなる。これは上記例と同じ結果である。すなわち、セルAの全てのユーザに対して全体的に干渉されるグループの数はN_hで同一である。

しかし、セルAの各ユーザ別に考慮すれば、上記例とは異なる。

【0140】
【数9】
【表2】

数式8

\[
N_g \times N_h \leq N_h \leq \frac{N_g + 1}{2} + (i + 1)N_g - m
\]

\[
i = 0, 1, 2, \ldots
\]
数式8の条件を満足し、かつN_xが2の倍数でない場合、セルAのユーザ$u = 2m$（但し、$m = 0, 1, 2, \ldots, (N_x - 1)/2$）は(i+1)回重なるようになり、数式8の条件を満足し、かつN_xが2の倍数である場合、セルAのユーザ$u = 2m$（但し、$m = 0, 1, 2, \ldots, N_x / 2 - 1$）は$i$回重なる。
【0141】
数式9

$N_x + iN_x - m \leq N_h < N_x + (i + 1)N_x - m$
$i = 0, 1, 2, \ldots$

数式9の条件を満足し、かつN_xが2の倍数である場合、ユーザ$u = 2m + 1$（但し、$m = 0, 1, 2, \ldots, (N_x - 3)/2$）である場合には(i+1)回重なる。
【数10】

数式10

$$\frac{N_x}{2} + i\frac{N_x}{2} - m \leq N_h < \frac{N_x}{2} + (i + 1)\frac{N_x}{2} - m$$
$i = 0, 1, 2, \ldots$

【0142】
数式10の条件を満足し、かつN_xが2の倍数である場合、ユーザ$u = 2m + 1$（但し、$m = 0, 1, 2, \ldots, N_x / 2 - 1$）である場合には(i+1)回重なる。
【0143】
図22及び図23において説明したセル内部及びセル間の周波数跳躍パターンは、本発明の他の技術的特徴等と必ず結びついて具現される必要はないものと理解されなければならない。すなわち、本発明に係るcombシンボル割り当て及び周波数跳躍の技術的特徴だけでも、本発明に係る周波数ダイバーシティ効果及びFFT部の計算量減少効果は発揮でき、図22及び図23において説明したセル内部及びセル間の周波数跳躍パターンは、追加的にセル間の干渉最小化及びセル内の移動間隔の干渉防止の効果を有するものであるから、図22及び図23において説明したセル内部及びセル間の周波数跳躍パターンは、本発明の他技術的特徴等と必ず結びついて具現される必要は不要である。
【0144】
図24は、パイロット信号の配置を示す図であって、チャネルまたは同期部推定のためのOFDMシステムのパイロット信号の配置例を示している。本発明の詳細な説明では、パイロット信号は、制御するための信号の中でデータ信号と共に送信され、全てのユーザに必要な信号及びチャネル推定のための信号を含む意味として使用する。
【0145】
一般に、このようなパイロット信号2100は、全体周波数帯域において同じ間隔で配置されるため、本発明のデータ送信のために定義したcombシンボルと同一であるため、上述した具現方法をそのまま適用することができる。
【0146】
すなわち、パイロット信号2100を時間スロットに沿って周波数跳躍を行い、固定された1つのcombシンボルと見做し、受信システム230で該当周波送波だけをpartial FFTを利用して処理することによって、全体帯域に対するチャネル情報を少ない計算量で得ることができる。
【0147】
このようなチャネル情報は、信号復元の時、全ての移動局に必要であるため、全ての受信システム230においてパイロット信号2100に該当するcombシンボルと移動局に割り当てられたcombシンボルのみをpartial FFT処理することによって、最小の電力で具現化することができる。
【0148】
一方、パイロット信号は全ての移動局に必要なので、最小の演算量で得ることのできるcombシンボルにパイロット信号が割り当てられることが好ましい。

【0149】

表3は最小の演算量を有するcombシンボルを求めるために、各combシンボル別に必要な演算量を表している。この表では、FFT部の全体解送波数Nが2048であり、combのシンボル数N_cが16であり、combシンボル当たりに割り当てられた解送波数N_gが128である場合を例にして、各combシンボル別に必要な複素数の和と複素数の乗算の演算量を比較し示す。表3において、combと表現されたa,b,...pは、図7のFFT部233の出力メモリ61に格納される解送波グループa,b,...pを意味する。
<table>
<thead>
<tr>
<th>c o m b</th>
<th>Partial FFT(DIF)</th>
<th>Partial FFT(DIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>複数数の和</td>
<td>複数数の乘算</td>
</tr>
<tr>
<td>a</td>
<td>2,816</td>
<td>258</td>
</tr>
<tr>
<td>b</td>
<td>2,816</td>
<td>384</td>
</tr>
<tr>
<td>c</td>
<td>2,816</td>
<td>512</td>
</tr>
<tr>
<td>d</td>
<td>2,816</td>
<td>638</td>
</tr>
<tr>
<td>e</td>
<td>2,816</td>
<td>768</td>
</tr>
<tr>
<td>f</td>
<td>2,816</td>
<td>894</td>
</tr>
<tr>
<td>g</td>
<td>2,816</td>
<td>1,022</td>
</tr>
<tr>
<td>h</td>
<td>2,816</td>
<td>1,148</td>
</tr>
<tr>
<td>i</td>
<td>2,816</td>
<td>1,280</td>
</tr>
<tr>
<td>j</td>
<td>2,816</td>
<td>1,406</td>
</tr>
<tr>
<td>k</td>
<td>2,816</td>
<td>1,534</td>
</tr>
<tr>
<td>l</td>
<td>2,816</td>
<td>1,660</td>
</tr>
<tr>
<td>m</td>
<td>2,816</td>
<td>1,790</td>
</tr>
<tr>
<td>n</td>
<td>2,816</td>
<td>1,916</td>
</tr>
<tr>
<td>o</td>
<td>2,816</td>
<td>2,044</td>
</tr>
<tr>
<td>p</td>
<td>2,816</td>
<td>2,170</td>
</tr>
<tr>
<td>総計</td>
<td>45,056</td>
<td>19,424</td>
</tr>
<tr>
<td>平均</td>
<td>2,816</td>
<td>1,214</td>
</tr>
</tbody>
</table>

【0150】

上記表3において、combシンボルが下方に行くほど、要求される複数数値の数が増加することが分かる。したがって、複数数値の数が最も小さなcombシンボル、すなわち出力メモリの0番アドレスに格納された副掲送波を含む副掲送波グループからなるcombシンボルから順次的に優先順位を定めてバイロット信号を割り当て、周波数数跳躍を行わないすなわち、全ての移動局がチャンネル情報を得るために必要な演算量が最小となる。すなわち、必要なバイロット信号の数に応じてcombシンボルを割り当てるものの、選定される優先順位は出力メモリの0番アドレスに格納された副掲送波を含むcombシンボルから次に少ない番号のアドレスに格納された副掲送波を含むcombシンボルの順にする。
図7を例とすれば、comb a, comb b,...の順次的な順に優先順位が決定される。割り当てられなければならないパイロット信号が複数である場合、前記決定された優先順位によってパイロット信号が割り当てられて移動局に送信される。

【0151】

図25は、本発明の一実施の形態によってパイロット信号のために割り当てられた副搬送波グループとデータ信号のために割り当てられた副搬送波グループとの周波数跳躍を説明するための例であって、図25では、副搬送波グループa1をパイロット信号に割り当てた場合の一例を示している。パイロット信号300は、時間スロットに沿って周波数跳躍を行わず、常に副搬送波グループa1に割り当てられており、データ信号201、202は与えられたパターンにより時間スロットに沿って周波数跳躍を行う。すなわち、全ての移動局は、常に副搬送波グループa1のパイロット信号2300と自分に割り当てられたcombシンボルのみを受信システム230でpartial FFTを行って、チャネル及び同期化情報と送信されたデータを得る。この時、副搬送波グループに該当する副搬送波信号はcombシンボルで配置され、副搬送波グループの周波数跳躍は、実際の周波数オフセットを有するcombシンボルへの周波数跳躍を意味する。

【0152】

以上では全体使用可能帯域にて所定間隔に分布した副搬送波グループであるcombシンボルを移動局に割り当て、周波数跳躍を行う技術について説明した。

【0153】

本発明の一実施の形態によれば、combシンボルをトリーチ(tree)構造で構成した、動的に副搬送波資源すなわちcombシンボルが割り当てられることができる。

【0154】

以下では、トリーチ構造で数値付けされた副搬送波資源を移動局に割り当てる技術について説明する。

【0155】

図26は、本発明の一実施の形態によってcombシンボルをトリーチ構造で構成してcombシンボル資源を割り当てる方法を説明するための図である。

【0156】

図26は、本発明の一実施の形態によって、全体使用可能帯域の副搬送波個数Nとcombシンボルを構成する副搬送波の個数Nsとが2の指数形態である時、combシンボルをトリーチ構造で構成し、2つのセルでトリーチ構造によってcombシンボル資源を割り当てる方法を説明するための図である。図に示されているように、全体使用可能帯域の副搬送波の個数N=2の2つある場合、combシンボルを構成する副搬送波の個数Nsが1, 2, 4, ..., 2^nであるトリーチ構造で構成する。このような構成にともなうcombシンボルを上記数式2によって表した。しかし、以下では周波数インデックスであるkが区分される必要ない場合は省略する。

【0157】

図26のトリーチ構造において、最も上位ノードにあるcombシンボルX1, 0が2^n個の副搬送波からなるcombシンボルであり、X1, 0が2^n-1個の副搬送波から構成されたcombシンボルX2, 0とX2, 1とからなる。

【0158】

すなわち、2^n個の副搬送波からなり、かつ周波数オフセット(Frequency offset)がbでcombシンボルX2, bは、2^n-1個の副搬送波からなり、かつ周波数オフセットが各a,bと0, b+2, 2^nであるcombシンボルX2, a−1, bとX2, a−1, b+2とからなる。

【0159】

このように全体使用可能帯域の副搬送波の個数N=2^nである環境において、Ns (Ns = 1, 2, 4, ..., 2^n, nは任意の整数)個の副搬送波からなるcombシンボルをノードとして有するトリーチ構造T2^nが図26に示されている。

【0160】
例えば、トリー構造 T_2^n において、2つの comb シンボル X_a, b と X_c, d とが
ある時 ($a \neq c$)、X_a, b が X_c, d の上位ノードであれば、X_a, b と X_c, d とを含
む。すなわち、$X_c, d (k) = 1$ であれば $X_a, b (k) = 1$ である。

【0161】

反面、X_a, b が X_c, d の上位ノードでなければ、X_a, b と X_c, d とは直交する。
すなわち、$X_c, d (k) = 1$ であれば $X_a, b (k) = 0$ であり、$X_c, d (k) = 0$
であれば $X_a, b (k) = 1$ である。

【0162】

したがって、全体 comb シンボルの集合 $\{ X_1, 0, X_2, 0, X_2, 1, \ldots, X_2^n, 0, \ldots, X_2^n, 0 \}$ を
トリー構造 T_2^n で構成し、移動局の要求データ送信率に応じて使用可能な comb シンボルを割り当て、割り当てられた comb シンボル
とその下位ノードにある comb シンボルが全て使用されたものと設定し、comb シンボルの割り当てが解消されれば、該当 comb シンボル
とその下位ノードにある comb シンボルが全て使用可能なものと設定することによって、全体使
用可能帯域の分割帯域の個数の $N = 2^n$ である環境において、$N (N = 1, 2, 4, \ldots, 2^n, n$ は任意の整数)
個の分割帯域からなる comb シンボルを周波数領域でし、移動局に割り当てることができ
る。

【0163】

一方、OFDM システムでは送信端や受信端でフィルタ具現などの理由で、ナル帯域
波 (null carrier) を利用するようになるため、実際データを載せることので
きる副帯域波の個数は 2 の指数形態でない場合もあ
る。

【0164】

このような場合には、図 26 のトリー構造を構成して comb シンボルを割り当て
一方、ナル帯域波に対応されるデータの位置を予め知ることができるため、データをシフト
するか、穿孔 (puncturing) して送信することができる。

【0165】

図 27 は、本発明の一実施の形態によってナル帯域波に対応されるデータを穿孔して
、データの送信率に損失がないようにデータを伝送する方法を説明するための図である。

【0166】

図 27 は、全体副帯域波の個数 N が任意の定数であって、comb シンボルを構成する
副帯域波の個数 N が 2 の指数形態であるため、comb シンボルをトリー構造で構成し、
1 のセルでトリー構造に応じて comb シンボル資源を割り当てるものので、ナル帯域波
に該当するデータを穿孔して伝送する方法を説明するための図であって、移動局に 2 つの
副帯域波を有する comb シンボルを割り当てられている帯域波を解釈を行う図示図である。参
照番号 1 と 2 と 3 の公式が示されるデータである時、ナル帯域波に対応するデータ
を穿孔して実際には送信しないが、データを穿孔されたデータを伝送されるため、ナル帯域波の
ない場合とデータ送信率は同一であり、穿孔されたデータは受信
端のエラー訂正符号の復号過程で復元できる。

【0167】

図 27 は、本発明の一実施の形態によってナル帯域波に対応されるデータをシフト
して、データ損失がないように送信する方法を説明するための図である。

【0168】

図 27 は、全体副帯域波の個数 N が任意の定数であって、comb シンボルを構成する
副帯域波の個数 N が 2 の指数形態であるため、comb シンボルをトリー構造で表し、1
つのセルでトリー構造に応じて comb シンボル資源を割り当てるものので、ナル帯域波に
該当する位置にナルデータを挿入し伝送する方法を説明するための図であって、移動局に
2 つの副帯域波を有する comb シンボルを割り当てられている帯域波を解釈を行う図示図であ
る。参照番号 1 と 2 と 3 の公式が示されるデータである時、comb シンボルの
初期位置と解釈パタンは送信端で既に知っているので、ナル帯域波にナルデータを挿入
し、本来ナル帯域波に対応するデータをシフトして、次のデータを載せることができる
搬送波に移動させて送信する。
【0169】
本発明によれば、図２７Aと図２７Bを介して開示された方法が適切に組合わせル
ことも排除しない。
【0170】
図２８Aと図２８Bは、本発明の一実施の実態によってcombシンボルを多重トリー構
造で構成してcombシンボル資源を割り当てる方法を説明するための図である。
【0171】
図２８Aと図２８Bは、本発明の一実施の実態によってN点-ポイントFFTが利用さ
れ、全体使用可能帯域の副搬送波個数Nが2の指数型でない最終combシンボルを多
重トリー（Multiple-tree）構造で構成し、1つのセルで多重トリー構造に応じ
てcombシンボル資源を割り当てる方法を説明するための図である。
【0172】
全体使用可能帯域の副搬送波個数Nが$2^n-1 < N < 2^n$であれば、
【数11】
$$
N = \sum_{i=0}^{n-1} a_i 2^i \quad (a_i=0, \ldots, 2^n-1) \text{は負でない整数}
$$
である。
【0173】
このような場合i = 0, ..., n, に対しトリーT_{2^{i-1}} を全て
【数12】
$$
\sum_{i=0}^{n-1} a_i
$$
個で構成することによって、副搬送波の個数Nに対した多重トリーを構成できる。
【0174】
図２８Aは、N = 2048でありN = 1792である場合、a_0 = 1, a_8 = 2,
a_7 = 2 (余り a_7 = 0) にて、ST_1 = T_{1024}, ST_2 = ST_2 = T_{256}, ST
4 = ST_5 = T_{128} (2^7 = 128, 2^8 = 256, 2^9 = 1024) すなわち5個の
サプトリーから構成された多重トリーの例図である。
【0175】
図２８Bは、N = 2048でありN = 1792である場合、a_7 = 14 (余り a_7 =
0) にて、ST_{i} = T_{128}, (i = 1, ..., 14) (2^7 = 128) すなわち14個の
サプトリーから構成された多重トリー例図である。
【0176】
ここで、互いに異なるサプトリーのノードに該当するcombシンボルを区分するため
、数式2の定義を次の数式11のように再定義する。
【数13】
数式11
$$
X_{st, N_{c}, q}(k) \begin{cases}
\neq 0, & k = pN_{c} + q + K_{st} \\
= 0, & \text{その他}
\end{cases}
$$
但し、
stはサプトリーインデックスであり、
K_{st}はサプトリーの開始番波数インデックスであり、
p = 0, 1, ..., (N_{a,t}/N_{c}) - 1 (N_{a,t}はサプトリーの副搬送波の数)であり
$q = 0, 1, \ldots, N - 1$
である。
【0176】
図28A、図28B及び数式11から互いに異なるサブトリのノードに該当するcombシンボルは互いに直交することを明らかにする。したがって、図26を介して開示された方法を各々のサブトリに適用して周波数資源を割り当てることによって、複数の副搬送波からなるcombシンボルを周波数衝突させて複数の移動局に割り当てることができる。
【0178】
また。
【数14】
\[\sum_{i=0}^{q} a_i \]
【数15】
\[N = \sum_{i=0}^{q} b_i 2^i \]
【数16】
\[\sum_{i=0}^{q} b_i \]
が小さくなるように設定する一方、ナル搬送波に対応するデータは、図27Aや図27Bを介して開示された方法にしたがって穿孔するか、シフトして送信できる。
【0179】
一方、周波数帯域別に適応変調が可能にするため、N個の副搬送波からなる全体周波数帯域をM個の連続した副搬送波からなるサブバンド(sub-band)に分けて構成し、移動局や基地局のFFT演算量を低減するため、各サブバンド毎にN/M点FFTを各々使用することができる。この場合、各サブバンド内の副搬送波をcombシンボルのトリー構造で構成し、このようなトリー構造をサブトリとして含む多重トリーの全体周波数帯域で構成することによって、combシンボル資源を割り当てる過程において、1つまたは複数のサブバンドにある任意の大きさの副搬送波を移動局に割り当てて、移動局におけるFFT演算量を低減することができる。
【0180】
図28Cは、N=2048、M=8である場合であって、各サブバンド毎に256(=2048/8)点FFTを使用する場合、ST \text{symbol} = T_{256}, (1 = 1, \ldots, 8) の8個のサブトリを含む多重トリーの図示図である。
【0181】
ここでナル搬送波がある場合には、図27A、図27B、図28A及び図28Bを介して開示された方法が適用されることができる。
【0182】
このように、全体使用可能帯域に存在するN個の副搬送波をM個のサブバンドに分割し、各サブバンドに対して構成されるcombシンボルサブトリを含む多重トリーの全体周波数帯域で構成することによって、combシンボル資源を割り当てる過程において、1つまたは複数のサブバンドにある任意の大きさの副搬送波を移動局に割り当てて、サブバンド単位で周波数跳躍を行わせることによって、周波数帯域別に適応変調が可能にするこ
ことができる。この場合、各サブバンドに属する副搬送波の数（N/M）に対しFFT演算が行われるので、演算量を減少させることができる。
【0183】
一方、移動局の要求データ通信率に応じて任意の正の整数N_r (≠ 2^n)個の副搬送波を移動局に割り当てる場合、2の指数形のない副搬送波個数N_rに対して、
【数17】

\[N_r = \sum_{i=0}^{n} \epsilon_i 2^i \]

【数18】

\[\sum_{i=0}^{\infty} \epsilon_i \]

のcombシンボルX_2^{n-1}a_1からなり、副搬送波の個数N_rを有するcombシンボル集合を移動局に割り当てることができる。
【0184】
図28Aないし図28Cを介して示された場合のように、全体副搬送波を多重トリー構造で表した場合にも、任意の副搬送波の個数N_rを有するcombシンボル集合を移動局に割り当てることができる。
【0185】
また、周波数ライバーシュートを得るため、c_1 = 1, i = 0, ..., nである各々のiを全てのサブリーから均一に抽出(pick up)できる。また、受信端でpartial FFT演算量を最小化するため、可能な場合に限って、複数のサブリーから抽出したcombシンボル
【数19】

\[X_{M_k,N_k,a_1} \cdots X_{M_k,N_k,a_n} \]

【数20】

\[N_{e_1} \]

が一定になるようにして同じ周波数間隔を有するようにし、任意の隣接した2つのサブリーから抽出したcombシンボルの各端周波数の間隔がcombシンボルの間隔と同じくするように優先的に割り当てることができる。
【0186】
図29は、図28Aの多重トリー構造において、352個の副搬送波を1つの移動局に割り当てる例を示した図である。352 = 256 + 64 + 32である。このサブリーを各サブリー1、サブリー3及びサブリー5に割り当てる。次いで、同じ周波数間隔のcombシンボル集合を割り当ててpartial FFT演算量を最小化する。
【0187】
図30は、セル内の全てのcombシンボルが1つの周波数跳躍パターンに応じて周波数領域から跳躍して、互いに異なるサイズのcombシンボル間の衝突が発生せずに周波数跳躍を行う方法を説明するための図である。
【0188】
図30は、図26、図28A、図28B、図28Cを介して示された方法により、1つのセルで複数の移動局に割り当てられたcombシンボルを周波数領域から直交跳躍する。
せる方法を説明するための図である。
【0189】
セル内の移動局領域で、割り当てられるcombシンボルがそのサイズによって所定の群に区分される場合には、図15と図20で説明された方法により、受信端でpartial FFT演算量を最小化できる。
【0190】
しかし、移動局が割り当てられた任意サイズのcombシンボルを構成する副搬送波グループと同じサイズを有する副搬送波グループ群内でだけ跳躍しなくても、直接跳躍及びpartial FFT演算量を最小化することができる。
【0191】
図28ないし図29を介して開示された方法により、セル内の移動局に割り当てられた、直交性を満たす多様なサイズのcombシンボルの中で、任意のcombシンボルX_{a, b}(k)の時間1での周波数跳躍パターンを表す周波数表示(indicator)関数Y_{a, b}(k: 1)は、次のように定義される。
【0192】
数式12
\[Y_{a, b}(k: 1) = X_{a, b}(k+P(1)) \mod N \]
但し、
\[P(1) (0 \leq P(1) \leq N) \]
は、時間1に応じるセル内のcombシンボルの周波数跳躍パターンであり、
Nは、全体副搬送波の個数である。
【0193】
数式12のY_{a, b}(k: 1)によってデータを送信して周波数跳躍を行う。図30では、全体副搬送波数が16個である時、図26の方法によって3100にX_{a, b}が1、3101にX_{a, b}が2、3102にX_{a, b}が3、3103にX_{a, b}が割り当て、周波数跳躍パターンがP(1) = 0, 7, 13, 3, 9, 2, …である時、数式12によるcombシンボルの時間1における全体周波数跳躍パターンを示している。
【0194】
図28と数式12から分かるように、1つのセルにおいて割り当てられた全てのcombシンボルが1つのパターンに応じて周波数領域から跳躍するため、初期に割り当てられたcombシンボルが直交性を満足すれば、セル内の割り当てられた全てのcombシンボルは、跳躍パターンに関してずれず常に直交性を満たす。
【0195】
また、Y_{a, b}(k: 1)は常にX_{a, b}(k)の形態で表すことができるのに、跳躍パターンに関係なく受信端でpartial FFT演算量を最小化できる。
【0196】
また、図28と図29で説明したように、他のセルには他の跳躍パターンを割り当ててセル間の干渉を平均化できる。
【0197】
上述したような本発明の方法は、プログラムで装置化されてコンピュータで読み出しすることのできる記憶媒体（CD-ROM、RAM、ROM、フラッシュディスク、ハードディスク、光磁気ディスクなど）に格納されることもできる。
【0198】
以上で述べたように、従来のFH-OFDMAでは、隣接副搬送波をグループにしてクラスターを基本単位として周波数領域から周波数跳躍を行うが、本発明では全体帯域に所定周波数間隔で隔離された副搬送波からなるcombシンボルを周波数領域から周波数跳躍を行うことによって、短いパケット送信時、周波数ダイバーシティを増大させ、かつ干渉平均効果を増大させる。
【0199】
また、combシンボル間の周波数跳躍を行うことによって、互いに異なる雑音パターンに応じて常に異なる副波送波に跳躍することを保障する。
【0200】
特に、本発明によれば、各移動局に割り当てられたcombシンボルに該当する部分のみをpartial FFTによって復元することによって、電力消費を最小化できるという長所がある。
【0201】
また、端末器または基地局の通信システムでもパラフィライン力が全て0である場合には演算しない方法を用いて、partial FFTと同じ演算量でIFFTを行なうことによって、電力消費を最小化する。
【0202】
本発明において周波数跳躍は、データが送信されるcombシンボルを時間スロットに沿って別に選択することによって行われる。周波数跳躍パターンは、時間スロットに沿って接続された送波グループにシフトさせるパターンなどの一定の規則を有するパターンとランダムに周波数跳躍を行うパターンが存在し、セル内の全ての移動局は時間スロットに沿って重ならないように周波数跳躍を行うことによって、セル内の干渉を発生しないようにする。この時、移動局毎にサービスの種類が異なって、異なる送信率を有する場合、combシンボルのサイズを送信率に比例して異なるように定義し、追加のcombシンボルは、接続された送波グループからなるように割り当てることによって、partial FFT演算量を最小化する。
【0203】
また、combシンボルを追加に割り当てられた場合、割り当てられた全体combシンボルを構成する副波送波グループの一つに周波数跳躍を行って、partial FFTの演算量の減少が最大となるようにしたり、追加された副波送波グループがある場合にも既存の副波送波グループの一つに周波数跳躍を行ってFFT計算を減少させると同時に、割り当てられた副波送波間の隔離を変化させて周波数ダイバシティ効果を増大させる。
【0204】
一方、セル内では割り当てられた全てのcombシンボルの周波数跳躍パターンを統一し、互いに異なるセル間には周波数跳躍パターンを異なるようにして、接続セル間の干渉を別途の周波数間隔を制御して平均化する。この時、互いに異なる周波数跳躍パターンを作成するため、時間スロットに沿って副波送波グループのシフト方向を1つにしシフト間隔を異なるようにするか、副波送波グループのシフト間隔を異なるようにし、方向を変えることができる。したがって、各セル内で同じ周波数を同時に使用する確率を最小化することによって、セル間の干渉を減少させる。
【0205】
なお、チャネルまたは同期コードのための信号を送られるパイロット信号もまたcombシンボルとして与えられるため、送信システムにおいてpartial FFTを利用している全体システムに対する情報を少し少ない演算量で得ることができる。この時、パイロット信号を割り当てるcombシンボルは、使用可能な全ての副波送波グループの中で最も小さな演算量を必要とする、最も優先順位に下げ周波数跳躍を行なうことによって、全ての移動局が最も少ない演算量でチャネル情報を得ることができるようにする。
【0206】
一方、combシンボルを割り当てにおいて、1つのセルで移動局が要求する送信率が多様な場合、combシンボルをトリミングまたは多重トリミングで構成して、多様なデータ送信率に適しており、かつ相互直交性を有するcombシンボル資源を動的に割り当てることができる。
【0207】
また、周波数帯域別に適切変調が可能にするために、各セルの副波送波からなる全体周波
数帯域をM個の連続した副搬送波からなるサブバンドに分割し、各サブバンド内の副搬送波をcombシンボルのトリート構造で構成し、このようなトリート構造をサブリーとして含む多重トリートの全体周波数帯域で構成することによって、combシンボル資源を割り当てる過程において、1つまたは複数のサブバンドにある任意の大きさの副搬送波を移動局に割り当て、各サブバンド毎にN/M−ポイントFFTを各々用いることによって、FFT演算量を低減することができる。

【0208】また、サブバンド単位で周波数跳躍を行うことによって、周波数帯域別に適応変調を可能にすることができる。

【0209】なお、本発明は、上記の実施の形態に限定されるものではなく、本発明に係る技術的思考から逸脱しない範囲内で様々な変更が可能であり、それらも本発明の技術的範囲に属する。

【図面の簡単な説明】

【0210】

【図1A】図1Aは、従来のOFDMA方式によってクラスタの周波数跳躍パターンを説明するための図である。

【図1B】図1Bは、従来のOFDMA方式によってクラスタが周波数跳躍を行う過程において、チャンネルの周波数トマに落ち込む状態を示す図である。

【図2】図2は、本発明が適用されるcombシンボルのFH−OFDMAシステムブロック図である。

【図3】図3は、本発明の実施の形態によって副搬送波からなるcombシンボルを周波数領域に示した図である。

【図4】図4は、本発明の実施の形態に係るcombシンボルの周波数跳躍の例を説明するための図である。

【図5】図5は、radix-2 DIFバタフライ部の構成図である。

【図6】図6は、radix-2 DITバタフライ部の構成図である。

【図7】図7は、DIFアルゴリズムが適用されたFFT部の信号フローチャートである。

【図8】図8は、DITアルゴリズムが適用されたFFT部の信号フローチャートである。

【図9】図9は、DIFアルゴリズムが適用されたIFFT部の信号フローチャートである。

【図10】図10は、本発明の一実施の形態によって1つの移動局に割り当てられたcombシンボルが隣接副搬送波グループに周波数跳躍を行うパターンを説明するための図である。

【図11】図11は、本発明の一実施の形態によって1つの移動局に割り当てられたcombシンボルがランダムに周波数跳躍を行うパターンを説明するための図である。

【図12】図12は、本発明の一実施の形態によってcombシンボルが追加に割り当てられる場合に、周波数帯域における副搬送波配置の変化を説明するための図である。

【図13】図13は、本発明の一実施の形態によってDIF方式のFFT部から隣接した副搬送波グループを算出するために必要なバタフライ部の演算量を説明するための図である。

【図14】図14は、DIF方式のFFT部から隣接しない副搬送波グループを算出するために必要なバタフライ部の演算量を説明するための図である。

【図15】図15は、本発明の一実施の形態によって互いに異なるサイズの副搬送波グループからなるcombシンボルがセル内の複数の移動局に割り当てられて、同じサイズの隣接した副搬送波グループに周波数跳躍を行うパターンを説明するための図である。

【図16A】図16Aは、本発明の一実施の形態によって1つの副搬送波グループからなるcombシンボルの周波数跳躍パターンに対応するpartial FFT演算過程を説明
するための図である。
【図16A】図16Bは、本発明の一実施の形態によって1つの副揚送波グループからなるcombシンボルの周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図16C】図16Cは、本発明の一実施の形態によって1つの副揚送波グループからなるcombシンボルの周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図16D】図16Dは、本発明の一実施の形態によって1つの副揚送波グループからなるcombシンボルの周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図17A】図17Aは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図17B】図17Bは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図17C】図17Cは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図17D】図17Dは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図18A】図18Aは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図18B】図18Bは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図18C】図18Cは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図18D】図18Dは、2つのcombシンボルが割り当てられた場合、周波数選択パターンに応じるpartial FFT演算過程を説明するための図である。
【図19】図19は、本発明の一実施の形態によってcombシンボルが追加に割り当てられて、2つの副揚送波グループが周波数選択を行う場合、周波数帯域で副揚送波の間隔変化を説明するための図である。
【図20】図20は、本発明の一実施の形態によって3つの副揚送波グループからなるcombシンボルが、セル内の複数の移動局に割り当てられてランダムに周波数選択を行うパターンの例を説明するための図である。
【図21】図21は、セル配置図である。
【図22A】図22Aは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図22B】図22Bは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図22C】図22Cは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図22D】図22Dは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図22E】図22Eは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図22F】図22Fは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図23A】図23Aは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
【図23B】図23Bは、本発明の一実施の形態によってセル間の干渉減少のための選択パターンの例を説明するための図である。
ターンの例を説明するための図である。
【図23C】図23Cは、本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するための図である。
【図23D】図23Dは、本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するための図である。
【図23E】図23Eは、本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するための図である。
【図23F】図23Fは、本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するための図である。
【図23G】図23Gは、本発明の一実施の形態によってセル間の干渉減少のための跳躍パターンの例を説明するための図である。
【図24】図24は、パイロット信号の配置を示す図である。
【図25】図25は、本発明の一実施の形態によってパイロット信号のために割り当てられた副帯送波グループとデータ信号のために割り当てられた副帯送波グループとの周波数跳躍を説明するための図である。
【図26】図26は、本発明の一実施の形態によってcombシンボルをトリー構造に構成しcombシンボル資源を割り当てる方法を説明するための図である。
【図27A】図27Aは、本発明の一実施の形態によって納入波に対応されるデータを穿孔することにより、データ送信率に損失がないようにデータを送信する方法を説明するための図である。
【図27B】図27Bは、本発明の一実施の形態によって纳入波に対応されるデータをシフトすることにより、データ損失がないように送信する方法を説明するための図である。
【図28A】図28Aは、本発明の一実施の形態によってcombシンボルを多重トリー構造に構成しcombシンボル資源を割り当てる方法を説明するための図である。
【図28B】図28Bは、本発明の一実施の形態によってcombシンボルを多重トリー構造に構成しcombシンボル資源を割り当てる方法を説明するための図である。
【図28C】図28Cは、N=2048、M=8の場合であって、各サブバンド毎に256(=2048/8)—FFTを使用する場合、ST1がT256(1, 2, ..., 8)の8個のサブトリーを含む多重トリーの例図である。
【図29】図29は、図28Aの多重トリー構造において、352個の副帯送波を1つの移動局に割り当てる例を示す図である。
【図30】図30は、1つのセルで全てのcombシンボルが任意の1つの周波数跳躍パターンに応じて周波数領域から跳躍して、互いに異なるサイズのcombシンボルが衝突されずに周波数跳躍を行う方法を説明するための図である。
【手続補正書】
【提出日】平成17年2月2日(2005.2.2)
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
周波数跳躍直交周波数分割多重接続方法において、
変調されたデータシーケンスに対して、下記数式のように全体使用可能周波数帯域にお
いて所定の間隔で配置される所定個数の副搬送波(副搬送波グループ)からなるcombパ
ターンの周波数領域信号X(k)(combシンボル，kは周波数インデックス)割り当て
る第1ステップと、
前記combシンボルを独立的な周波数オフセットを有するように周波数跳躍を行う第
2ステップと、
前記combシンボルを時間領域信号x(n)(nは時間インデックス)に逆高速フーリエ
変換させて送信する第3ステップと
を含み、
【数1】
\[N = \sum_{i=1}^{N_c} N_n = N_c \ast N_s (N_n = N_s = Const. \text{である場合}) \]
但し、
\(N_c \): 全体使用可能周波数帯域で割り当て可能なcombシンボルの個数
\(N_s \): i番目combシンボル内の副搬送波個数，i番目combシンボルのサイズ
i番目のcombシンボルを構成する副演送波グループのサイズ

【数2】

\[X_{\nu,\lambda}(k) = \begin{cases} \neq 0, k = p_j N^c + q_i \\ = 0, \text{otherwise} \end{cases} \]

但し、

\[\{ p_j = 0, 1, \ldots, N^c - 1 \} \]
\[\{ q_i = 0, 1, \ldots, N^e - 1 \} \]

前記第2ステップは、
セル内の移動局に割り当てられたcombシンボル \(X_{\nu, \lambda} \) を周波数跳躍パターンを表す下記式5の周波数表示関数 \(Y_{\nu, \lambda} \) に応じて、前記combシンボルの周波数跳躍を行うことを特徴とする周波数跳躍直交周波数分割多重接続方法。

\(Y_{\nu, \lambda} \) は \((k : 1) = X_{\nu, \lambda} \) \((k + P \cdot 1) \mod N) \)

但し、

\(P \neq 0 \) の場合、時間的に応じるセル内のcombシンボルの周波数跳躍パターンであり、

\(N \) は全体副演送波の個数である。

【請求項2】
全体使用可能帯域において、\(N = 2^n \) の状況でない場合、周波数が存在する場合、前記第1ステップは、

副演送波の個数が \(2^n \) であるcombシンボルの \(X \) が最上位ノードであり、\(2^n \) 倍の副演送波からなる周波数表示関数が \(b \) であるcombシンボル \(X_{\nu, \lambda} \) は \(2^n \) 倍の副演送波とし、周波数表示関数が \(b + 2^a \) であるcombシンボル \(X_{\nu, \lambda} \) と \(X_{\nu, \lambda} \) が同じノードであり、副演送波の個数が \(1 \) であるcombシンボルが同一ノードであると、 \(T_{2^n} \) により、1個から \(2^n \) 倍までソリッドトリージを構成する第4ステップと、

移動局の要求送信帯に適合したサイズの使用可能なcombシンボルを前記第1ステップに割り当て、前記トリー \(T_{2^n} \) において前記割り当てられたcombシンボルの下位ノードに対応するcombシンボルを前記割り当てられたcombシンボルを割り当て解体されるときまで前記第1ステップが適用されるセル内に割り当てられないようにすることによって、combシンボルを衝突なく解体する第5ステップと、

を含むことを特徴とする請求第1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項3】
全体使用可能帯域において存在する \(N = 2^n \) の状況でない場合、ダミーが存在する副演送波の個数が \(2 \) の状況でない場合、前記第1ステップは、

ダミー送信に対応されるデータを空きすることを特徴とする請求第1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項4】
全体使用可能帯域において存在する \(N = 2^n \) の状況でない場合、ダミーが存在する副演送波の個数が \(2 \) の状況でない場合、前記第1ステップは、

ダミー送信で再利用するデータを含むデータを含むことを特徴とする請求第1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項5】
全体使用可能帯域において、N個 \((2^n - 1 < N < 2^n)\)。

【数3】

\[
N = \sum_{i=0}^{r} a_i \cdot 2^i \quad (a_i = 0, \ldots, r)
\]

\(n\)は負でない整数の副搬送波が存在する場合、前記第1ステップは、
副搬送波の個数が\(2^n\)である\(\text{combシンボル} X_{2^n} \)が上位ノードであり、\(2^n - 1\)個の副搬送波からなり周波数オフセットが\(b\)である\(\text{combシンボル} X_{2^n - 1} \), \(b + 2^a\)である\(\text{combシンボル} X_{2^n - 1} \), \(b + 2^a\)が子ノードであり、副搬送波の個数が1である\(\text{combシンボル} X_{2^n - 1} \)により、1個から\(2^n - 1\)個までの副搬送波からなる\(\text{combシンボル} X_{2^n - 1}\)サブストリーを構成する第6ステップと。

前記各々の\(i\)に対し前記第6ステップを行って\(a_i\)個の\(\text{combシンボル}\)サブストリーで構成され、総N個までの副搬送波からなる多重ストリーを構成する第7ステップと。

移動局の要求信号率に適合したサイズの使用可能\(\text{combシンボル}\)を前記多重ストリーのいずれかのサブストリーから選択して前記移動局に割り当て、前記選択されたサブストリーにおいて、前記割り当てられた\(\text{combシンボル}\)のサブストリーに対応する\(\text{combシンボル}\)を前記割り当てられた\(\text{combシンボル}\)が割り当てて解消されるまで前記移動局が属するセル内で割り当てられないようにすることによって、\(\text{combシンボル}\)を厳密なく割り当てて第8ステップと。

を含むもの。

前記複数のサブストリーからなる多重ストリーにおいて、\(\text{combシンボル}\)は前記数式2から下記数式に再定義されることを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。

【数4】

\[
X_{\pi, N, q}(k) = \begin{cases}
0, & k = pN_c + q + K_{\pi} \\
0, & \text{その他}
\end{cases}
\]

但し、
\(s\)はサブストリーインデックスであり、
\(K_{\pi, q}\)はサブストリーの開始周波数インデックスであり、
\(p = 0, 1, \ldots, (N_{\pi, q} / N_c) - 1\)（\(N_{\pi, q}\)はサブストリーの副搬送波の数）であり、
\(q = 0, 1, \ldots, N_c - 1\)である。

【請求項6】

前記第8ステップは、
移動局の要求信号率に適合したサイズの使用可能\(\text{combシンボル}\)を前記多重ストリーの中でいずれかの\(\text{combシンボル}\)も割り当てられないサブストリーを優先的に選択することを特徴とする請求項1に記載の周波数跳躍直交周波数分割多重接続方法。

【請求項7】

前記第1ステップは、
全体使用可能帯域に存在するN個の副搬送波をM個のサブバンドに分割する第9ステップと。
副搬送波の個数が\(2^n\)である\(\text{combシンボル} X_{2^n} \)が上位ノードであり、\(2^n - 1\)個の副搬送波からなり周波数オフセットが\(b\)である\(\text{combシンボル} X_{2^n - 1} \), \(b + 2^a\)は\(2^n - 1\)個の副搬送波からなり周波数オフセットが\(b\)及び\(b + 2^a\)である\(\text{combシンボル} X_{2^n - 1} \), \(b + 2^a\)が子ノードであり、副搬送波の個数が
1であるcombシンボルが终端ノードであるトリートりT_2に、1個から2個までの副送波が元るcombシンボルを構成する第10ステップと

前記各々のサブバンドに対して前記第10ステップを行って、M個のcombシンボルサブトリーからなり、総M個までの副送波が元る多重トリーを構成する第11ステップと。

移動局の要素列周波率に適合したサイズの使用可能combシンボルを前記多重トリーのいずれかのサブトリーから選択して前記移動局に割り当て、前記選択されたサブトリーにおいて、前記割り当てられたcombシンボルの下位ノードに対応するcombシンボルは、前記割り当てられたcombシンボルが割り当て解除される時の前記移動局が属するセル内で割り当てられないようにすることによってMcombシンボルを衝突なく割り

dて第12ステップとを含むもの。

前記M個のサブトリーからなる多重トリーにおいて、combシンボルは前記変数2から下記変数に再定義されることを特徴とする請求項1に記載の周波数観測直交周波数分割多重接続方法。【数5】

$$X_{\mu,N_c,q}(k)\left\{\begin{array}{l}
0, \quad k = pN_c + q + K_{\mu}
\end{array}\right.\begin{array}{l}
0, \text{その他}
\end{array}$$

但し、

sはサブトリーインデックスであり、

K_{μ}はサブトリーの開始周波数インデックスであり、

$p = 0, 1, \ldots, (N_{a,\mu} / N_c) - 1$($N_{a,\mu}$はサブトリーの副送波の数)であり

$q = 0, 1, \ldots, N_c - 1$である。

【請求項8】

前記第2ステップは、

前記移動局に割り当てられたcombシンボルが属するサブトリー単位で前記combシンボルの周波数観測を行うことを特徴とする請求項7に記載の周波数観測直交周波数分割多重接続方法。

【請求項9】

前記第2ステップは、

前記combシンボルをサイズが同一であるが、互いに異なる周波数オフセットを有するcombシンボルに周波数観測を行うことを特徴とする請求項1に記載の周波数観測直交周波数分割多重接続方法。

【請求項10】

前記第2ステップは、

全てのcombシンボルがランダムに周波数観測パターンを有するように、前記combシンボルの周波数観測を行うことを特徴とする請求項1に記載の周波数観測直交周波数分割多重接続方法。

【請求項11】

前記第2ステップは、

同じセル内の全て的動局に対して同じ周波数観測パターンを有するように、前記combシンボルの周波数観測を行うことを特徴とする請求項1に記載の周波数観測直交周波数分割多重接続方法。

【請求項12】

前記第2ステップは、

互いに異なるセル間の移動局に対して互いに異なる周波数観測パターンを有するように、前記combシンボルの周波数観測を行うことを特徴とする請求項11に記載の周波数
跳躍直交周波数分割多重接続方法。
【請求項13】
前記第2ステップは、
周波数跳躍間隔がセル別に異なるように、前記combシンボルの周波数跳躍を行うことを特徴とする請求項11に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項14】
前記第2ステップは、
周波数跳躍方向がセル別に異なるように、前記combシンボルの周波数跳躍を行うことを特徴とする請求項11に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項15】
移動局の要求によってcombシンボルを追加に割り当てる場合、前記第1ステップは、
現在割り当てられているcombシンボルを構成する副搬送波グループの側接グループからなるcombシンボルを追加に割り当てるこれを特徴とする請求項11に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項16】
前記追加に割り当てられるcombシンボルは、
前記現在割り当てられているcombシンボルを構成する副搬送波グループと同じサイズの副搬送波グループ(副搬送波グループ群)のいずれかの副搬送波グループからなることを特徴とする請求項15に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項17】
前記第2ステップは、
前記追加に割り当てられるcombシンボルを前記現在割り当てられているcombシンボルを構成する副搬送波グループと同一サイズの副搬送波グループ群内で周波数跳躍を行うことを特徴とする請求項15に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項18】
前記第2ステップは、
割り当てられたcombシンボルを構成する副搬送波グループの和を周波数跳躍の最小単位として、数式6により決定される番号に対応する副搬送波グループからなるcombシンボルに周波数跳躍を行うもの。
combシンボルが追加に割り当てられた場合、前記副搬送波グループの和は、
初期に割り当てられたcombシンボル及び追加に割り当てられたcombシンボルを構成する全ての副搬送波グループの和であることを特徴とする請求項15に記載の周波数跳躍直交周波数分割多重接続方法。
\[G = \left(g_n + P(1) \times 1 \right) \mod N_c \]
\(G \)：時間スロット1でのグループ番号
\(P(1) \)：周波数跳躍パターン間数
\(i \)：割り当てられたグループの数
\(g_n \)：最初時間スロットにおけるグループ番号
【請求項19】
前記第2ステップは、
最初割り当てられたcombシンボルを構成する副搬送波グループを周波数跳躍の最小単位として、割り当てられたcombシンボルの周波数跳躍を行うことを特徴とする請求項15に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項20】
前記第3ステップは、
Decimation In Frequencyアルゴリズムに応じて差分部分高速フーリエ変換させるもの。
高速フーリエ変換部の入力アドレスと前記周波数インデックスとの順次にマッピング
されて、前記周波数領域信号 \(X(k) \) が入力される第１３ステップを含むことを特徴とする
請求項１に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項21】
前記第３ステップは、
前記逆変換部高速フーリエ変換部を構成するバタフライの入力端に全て \(0 \) が入力される場合
には、バタフライ演算を行わずに制御する第１４ステップをさらに含むことを特徴とする請求項２０に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項22】
前記第３ステップは、
Decimation In Time アルゴリズムに応じて逆部高速フーリエ変換
させるものの、
前記逆変換部高速フーリエ変換部の入力アドレスのビット逆転された値と前記周波数イン
デックス \(K \) がマッピングされて、前記周波数領域信号 \(X(k) \) が入力される第１５ステッ
プを含むことを特徴とする請求項１に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項23】
前記第３ステップは、
前記逆変換部高速フーリエ変換部を構成するバタフライの入力端に全て \(0 \) が入力される場
合には、バタフライ演算を行わずに制御する第１６ステップをさらに含むことを特徴とする請求項２２に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項24】
前記第３ステップから送信された comb シンボルに対応する時間領域符号 \(y(n) \) を受
信する第１７ステップと、
前記時間領域符号 \(y(n) \) を最初設定された周波数オフセットに復元させる第１８ステッ
プと、
前記時間領域符号 \(y(n) \) を周波数領域信号 \(Y(k) \) が周波数インデックスである、と
高速フーリエ変換させて、変調されたデータシーケンスを復元する第１９ステップと
をさらに含むことを特徴とする請求項１に記載の周波数跳躍直交周波数分割多重接続方
法。
【請求項25】
前記第１９ステップは、
Decimation In Frequency アルゴリズムに応じて高速フーリエ
変換が行われ、
高速フーリエ変換部の出力アドレスのビット逆転された値と前記周波数インデックス \(k \)
とがマッピングされて、前記周波数領域信号 \(Y(k) \) が出力される第２０ステップを含むこ
とを特徴とする請求項２４に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項26】
前記第１９ステップは、
前記高速フーリエ変換部から出力される前記周波数領域信号 \(Y(k) \) に応じて、前記高
速フーリエ変換部を構成するバタフライの演算が行われるか、行われないようにする第２１ステップをさらに含むことを特徴とする請求項２５に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項27】
前記第１９ステップは、
Decimation In Time アルゴリズムに応じて高速フーリエ変換が行われ、
高速フーリエ変換部の出力アドレスと前記周波数インデックス \(k \) とが順にマッピング
されて、前記周波数領域信号 \(Y(k) \) が出力される第２２ステップを含むことを特徴とす
る請求項２４に記載の周波数跳躍直交周波数分割多重接続方法。
【請求項28】
前記第１９ステップは、
前記高速フーリエ変換部から出力される前記周波数領域信号 \(Y(k) \) に応じて、前記高速フーリエ変換部を構成するパラメータの演算が行われるか、行われないようにする第２３ステップをさらに含むことを特徴とする請求項２７に記載の周波数域躍直交周波数分割多重接続方法。
【請求項29】
前記データシーケンスは、
パイロット信号または制御信号に対応するシーケンスであることを特徴とする請求項１に記載の周波数域躍直交周波数分割多重接続方法。
【請求項30】
前記第２ステップは、
０を含む所定の周波数オフセットに制限されるように、周波数域躍を行わることを特徴とする請求項２９に記載の周波数域躍直交周波数分割多重接続方法。
【請求項31】
前記第１ステップは、
前記高速フーリエ変換部の入力端アドレス及び前記高速フーリエ変換部の出力端アドレスにおいて、各々のアドレスを含む周波数グループを最優先順位に付与し、前記周波数グループの隣接グループに対して順次に優先順位を付与して、優先順位にしたがって前記パイロット信号または制御信号に対して \(\text{comb} \) シンボルを割り当てることを特徴とする請求項３０に記載の周波数域躍直交周波数分割多重接続方法。
A. CLASSIFICATION OF SUBJECT MATTER

IPC7 HOAI 11/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 HOAI 11/00, HOA1 21/26

Documentation searched and other documentation to the extent that such documents are included in the fields searched

KR, JP: classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

NPS, DERWENT, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Computing partial DFT for echo spectrum evaluation</td>
<td>1, 2, 4, 5, 8, 11, 21-31</td>
</tr>
<tr>
<td></td>
<td>Shouhong He, Terzis, M.; Signal Processing Letters, IEEE, Volume: 3 Issue: 6, June 1996</td>
<td>Page(s): 173-175</td>
</tr>
<tr>
<td>Y</td>
<td>VLSI computation of the partial DFT for demodulation in multi-channel OFDM system</td>
<td>1, 2, 4, 5, 8, 11, 21-31</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family matrix.

* A special category of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 B earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claimed or which is cited to establish the publication date of earlier or other special reasons (as specified)
 U document referring to an earlier document, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

1* Document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
2* Document not in conflict with the application but cited to understand the principle or theory underlying the invention.
3* Document published prior to the international filing date and cited to establish the publication date of earlier special reasons.
4* Person skilled in the art document listed by the examiner as a reference.

Date of the actual completion of the international search: 25 JULY 2003 (25.07.2003)

Date of mailing of the international search report: 25 JULY 2003 (25.07.2003)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dugung-Dong, Seo-gra, Daejeon 302-701, Republic of Korea

Authorized office

JEONG, Yong Ioo

Telephone No. 82-42-481-5674

Form PCT/ISA/210 (second sheet) (July 1998)

(特許庁注: 以下のものは登録商標)

フロッピー

(74) 代理人 100075812
弁理士 吉武 賢次

(74) 代理人 100089889
弁理士 橋谷 彰俊

(74) 代理人 100002991
弁理士 佐藤 泰和

(74) 代理人 100096921
弁理士 古元 弘

(74) 代理人 100103203
弁理士 川崎 康

(74) 代理人 100107582
弁理士 関根 稔

(72) 発明者 チャン・キョン・ヒ
大韓民国デジョン、セオ・グ、ドゥンサン、1 - ドン、クロー・バー、アパート、ナンバー104 - 1409

(72) 発明者 キム・クアン・スン
大韓民国デジョン、ユソン・グ、シンソン・ドン、ハナ、アパート、ナンバー109 - 1203

(72) 発明者 チョ・ヨン・ス
大韓民国ソウル特別市、セオチョ・グ、パンポ・ドン、1 - 1、シンパンポ、アパート、ナンバー25 - 1006

(72) 発明者 ハ・スケ・ウォン
大韓民国ソウル特別市、グァンジン・グ、グァンチャン・ドン、ギクドン、アパート、ナンバー1 - 405

F ターム(参考) 5K022 DD01 DD11 DD13 DD19 D021 D023 D031 D033 EE04 EE11 EE21 EE31 FF01