
3914 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007

Efficient Puncturing Method for
Rate-Compatible Low-Density Parity-Check Codes

Hyo Yol Park, Student Member, IEEE, Jae Won Kang, Kwang Soon Kim†, Senior Member, IEEE,
and Keum Chan Whang

Abstract— In this paper, we propose an efficient puncturing
method for LDPC codes. The proposed algorithm provides the
order of variable nodes for puncturing based on the proposed
cost function. The proposed cost function tries to maximize
the minimum reliability among those provided from all check
nodes. Also, it tries to allocate survived check nodes evenly to all
punctured variable nodes. Furthermore, the proposed algorithm
prevents the formation of a stopping set from the punctured
variable nodes even when the amount of puncturing is quite large.
Simulation results show that the proposed punctured LDPC
codes perform better than existing punctured LDPC codes.

Index Terms— Low-density parity-check code, rate-compatible
code, puncturing.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes have very pow-
erful and promising advantages in both performance and

complexity over turbo codes. Because of such advantages,
IEEE 802.16e recently adopted LDPC codes as optional
forward error correction (FEC) codes [1]. In existing third-
generation cellular system standards, rate-compatible punc-
tured turbo (RCPT) codes have been adopted for adaptive
modulation and coding (AMC) and hybrid automatic repeat
request (HARQ) techniques [2], which can enhance the system
performance. Those RCPT codes can support various code
rates from a single mother code by applying appropriate punc-
turing patterns. However, in LDPC codes, such a puncturing
technique has not yet been well established, which has been
considered a major drawback of LDPC codes compared to
turbo codes. Recently, there have been some efforts to develop
solutions for rate-compatible punctured LDPC codes [3]–
[7]. In [3], capacity-approaching puncturing distributions were
proposed for irregular LDPC codes. However, the puncturing
distributions cannot determine the exact locations of punctured
bits and are valid only when the codeword length is infinite
and there is no cycle in the graph associated with the code.
In [4], the structure of a parity check matrix for a rate-
compatible punctured LDPC code was proposed. However,
it cannot support various code rates and cannot determine
the exact puncturing locations, either. In [5], a group-wise
puncturing method was proposed by maximizing the number

Manuscript received June 19, 2006; revised January 21, 2007, March
22, 2007, and May 16, 2007; accepted July 25, 2007. The associate editor
coordinating the review of this paper and approving it for publication was A.
Grant.

The authors are with the Department of Electrical and Electronic Engineer-
ing, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749,
Korea.

† Corresponding author (e-mail: ks.kim@yonsei.ac.kr).
Digital Object Identifier 10.1109/TWC.2007.060386.

of k-step recoverable (k-SR) nodes at the lowest value of
k (denoted as the minimum k-SR nodes in the sequel) and
puncturing the group of the same k-SR nodes for practical
regular LDPC codes. Here, a k-SR node denotes a punctured
variable node that can be recovered at the kth iteration.
However, this algorithm cannot provide bit-wise puncturing
and does not take the recovery reliability of a k-SR node into
account. Later in [6], the number of survived check nodes of
a k-SR node was considered based on the fact that a k-SR
node with more survived check nodes can be recovered more
reliably. However, it can be applied only to an LDPC code
with a dual-diagonal block structure and does not take the
recovery reliability fully into account. In [7], it was shown
that a punctured node with a smaller number of unpunctured
variable nodes (denoted as 0-SR nodes in the sequel) in its
recovery tree is very likely to have higher recovery reliability.
Taking such recovery reliability into account, the algorithm in
[7] tries to maximize the number of the minimum k-SR nodes
(i.e, to minimize the number of iterations required to recover
a punctured node). After that, starting from the minimum k-
SR nodes, the order of a bit-wise puncturing among the same
k-SR nodes is determined by trying to allocate more survived
check nodes to the variable nodes to be punctured earlier.
However, trying to maximize the recovery reliability of the
punctured nodes cannot directly improve the overall decoding
performance because it does not consider the fact that a check
node cannot improve the reliability of the neighboring 0-SR
nodes until all the neighboring punctured nodes are recovered.
In addition, as the amount of puncturing becomes larger, the
increasing number of survived check nodes of one k-SR node
reduces the number of survived check nodes of other k-SR
nodes, which results in poor recovery reliability of the other
k-SR nodes.

In this paper, we propose an efficient puncturing algorithm
for LDPC codes that does not try to minimize the number
of iterations required to recover each punctured node and
maximize the recovery reliability of punctured nodes as in
[7], but instead tries to maximize the minimum reliability
provided among check nodes (the reliability provided from
a check node is denoted as the initial reliability of the check
node in the sequel). For this purpose, a pruned recovery tree
is newly defined and used. In addition, the proposed algorithm
can provide similar recovery reliability to all punctured nodes
by trying to allocate survived check nodes evenly to all
punctured nodes by reserving only one survived check node
for each punctured node. Furthermore, the proposed algorithm
provides an efficient method for preventing punctured nodes

1536-1276/07$25.00 c© 2007 IEEE

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007 3915

from forming a stopping set. The proposed algorithm can be
applied to any LDPC code because it does not assume any
structure on the parity check matrix. To prove the usefulness
of the proposed algorithm, we will obtain puncturing patterns
of some LDPC codes and will show that the frame error rate
(FER) performance of the proposed punctured LDPC codes is
better than that of previously known punctured LDPC codes.

II. THE PROPOSED PUNCTURING ALGORITHM

We define some notations that will be used throughout this
paper as follows:

• V (C): the set of all variable (check) nodes.
• Vc (Cv): the set of the neighbor variable (check) nodes

of a check node c (variable node v).
• Np: the total number of variable nodes to be punctured.
• SR(v): the number of iterations required to recover the

punctured node v, i.e, SR(v) = k if v is a k-SR node.
• SR(c) � maxv∈Vc SR(v).
• Tl(c): the l-step pruned recovery tree of a check node c,

0 ≤ l ≤ SR(c).
• Cm(Tl(c)): the set of all check nodes in the (2m− 1)th

level of Tl(c), 1 ≤ m ≤ SR(c) + 1.
• Vm(Tl(c)): the set of all variable nodes in the (2m)th

level of Tl(c), 1 ≤ m ≤ SR(c) + 1.
• C(Tl(c)) �

⋃SR(c)+1
m=1 Cm(Tl(c)): the set of all check

nodes in Tl(v).
• V(Tl(c)) �

⋃SR(c)+1
m=1 Vm(Tl(c)): the set of all variable

nodes in Tl(c).
• Vc1(Tl(c)): the set of all 0-SR nodes in V(Tl(c)) spanned

from a check node c1 ∈ C(Tl(c)).
• p(v): the puncturing status of a variable node v. p(v) = 0

(1) when v is punctured (not punctured).
• R(c): the reservation status of a check node c. R(c) = 1

(0) when c is reserved (not reserved).
• C0 � {c|R(c) = 0}.
• s(v) � minc∈Cv |Vc(Tq(c))| for a q-SR node v ∈

V(T0(c)). Note that s(v)=1 for a 0-SR node v.
• C(c) �

∑
v∈Vc

s(v) : the cost function of a check node
c. As C(c) decreases, the initial reliability of c increases.

• r(v) �
∑

c∈Cv
R(c) + 1.

• b(v) � |Cv|, where |A| denotes the cardinality of a set
A.

• k(v) �
∑

c∈Cv
C(c).

• C(v) � r(v)+ b(v)w−1 +k(v)w−2, where the weight w
is 2n2: the cost function of a variable node v.

The proposed puncturing algorithm assumes a conventional
message-passing decoder using belief propagation. At each
time to select the next puncturing node, we first construct
the SR(c)-step pruned recovery tree, TSR(c)(c), for each
unreserved check node c ∈ C as follows.

1) Construction of T0(c): An ordinary tree is constructed
from the check node c except for the rule that each
branch of the tree stops spanning at a 0-SR node. This
tree is denoted as the 0-step pruned recovery tree of c.

2) Pruning Procedure: For a given Tq(c), 0 ≤ q ≤ SR(c),
Tq+1(c) is constructed as follows. If there exists any
set of check nodes CI = {ci, i ∈ I} such that
CI ⊂ CSR(c)−q+1(Tq(c)) and CI ⊂ Cv′ for any

v′ ∈ VSR(c)−q(Tq(v)), only one check node ci∗ is
selected where i∗ = arg mini∈I |Vci(Tq(c))| and check
nodes and their successors are pruned in Tq(c). This
process continues until there is no such a set and the
remaining tree is Tq+1(c).

An example of the pruning procedure is shown in Fig. 1.
Here, C0 = {c1, c2}, where SR(c1) = SR(c2) = 2, and
the corresponding 0-step recovery trees T0(c1) and T0(c2),
are constructed, respectively. At the first pruning step, there is
nothing to prune because each 1-SR node in level 4 has only
one child check node. At the second pruning step, the check
nodes c3 and c5 in level 3 are pruned with their successors
because they have more 0-SR nodes as their successors than
check nodes c4 and c6, respectively. After obtaining the
SR(c)-step pruned recovery tree TSR(c)(c) for each c ∈ C0,
C(c) and C(v), v ∈ Vc, are calculated in each SR(c)-step
pruned recovery tree TSR(c)(c). Then, the selection of a pair
of a check node (to be a reserved survived check node) and
a variable node (to be punctured) is performed as follows.
At first, construct C∗ as the set of unreserved check nodes
c∗ with the minimum cost function C(c) among ∀c ∈ C0.
Also, construct V∗ as the set of variable nodes v∗ with the
minimum cost function C(v) among the set {v|v ∈ Vc for
c ∈ C∗, p(v) = 1}. If there is only one element in V∗,
the variable node v∗ ∈ V∗ and the connected check node
c∗ ∈ C∗ ∩ Cv∗ are selected as the punctured node and
the corresponding reserved check node, respectively. If there
exists more than one element in V∗, one element is selected
arbitrarily and its neighbor check node in C∗ is selected as
its reserved check node. If the selected variable node fails the
stopping set check, the next candidate is tried, and the process
repeats until the stopping set check is satisfied. Note that
the reliability provided to the variable nodes in Vc from the
survived check node c after the SR(c)-step recovery increases
as C(c) decreases. Therefore, it is expected to enhance the
overall decoding performance by making maxc∈C C(c) as
small as possible. Also, note that C(v) consists of three
functions. Here, the weight w is introduced to combine them
into a single cost function. Because r(v), b(v), and k(v) are
strictly less than 2n2, the cost function is dominated by r(v). If
two nodes have the same value of r(v), then the cost function
is dominated by b(v), and so on. At first, the cost function
selects the variable node with the lowest r(v). The higher the
value of r(v) is, the more important the variable node v is
because such a variable node should be used for the recovery
of more punctured nodes than others. Thus, such a variable
node should be punctured later. This concept of reservation
basically reduces the probability that punctured nodes form a
stopping set. After that, the cost function selects the variable
node with the lowest degree (the smallest value of b(v)) among
the variable nodes with the same r(v). By puncturing the
variable node with the lowest b(v), the number of check nodes
whose initial reliability decreases (C(c) increases) due to the
puncturing is reduced, which helps the recovery reliability of
other variable nodes to be punctured. Finally, the cost function
selects the variable node with the lowest value of k(v) among
the variable nodes with the same r(v) and b(v). By puncturing
the variable node with the lowest value of k(v), the maximum

3916 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007

1v 1v
1c 2c

3c 4c 5c 6c

2v 3v

None are pruned during the first pruning stage
Pruned subtree during the second pruning stage

C(c)=8 C(c)=7

C(c)=9 C(c)=8C(c)=8C(c)=9

C(c)=6 C(c)=4 C(c)=6 C(c)=6

Reserved Reserved

Selected

Selected
level 1

level 2

2nd pruning stage

1st pruning stage

level 3

level 4

level 5

level 6

the same variable node

Reserved

pruning pruning

Reserved Reserved Reserved

s(v)=4 s(v)=1 s(v)=1s(v)=4

s(v)=3 s(v)=3

s(v)=1

s(v)=1

s(v)=1s(v)=1s(v)=1

s(v)=1

s(v)=1s(v)=1s(v)=1

s(v)=1

s(v)=1s(v)=1s(v)=1s(v)=1

s(v)=1s(v)=1s(v)=1s(v)=1

s(v)=1s(v)=1s(v)=1s(v)=1s(v)=1

s(v)=3 s(v)=2

b(v)=3
r(v)=1

r(v)=1

r(v)=1 r(v)=1

b(v)=3

b(v)=2 b(v)=2

b(v)=3

r(v)=1
b(v)=4

k(v)=23

r(v)=2
b(v)=3

r(v)=2
b(v)=4

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

k(v)=24r(v)=1r(v)=1r(v)=1

r(v)=1 r(v)=1 r(v)=2r(v)=2b(v)=2b(v)=2
b(v)=4

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

r(v)=2
b(v)=3

Fig. 1. Examples of the construction and pruning procedure of the pruned recovery tree: the square, the circle, and the gray circle denote a survived check
node, an already punctured node, and a 0-SR node, respectively.

value of C(c) tends to be minimized, and C(c)’s of all the
check nodes tend to be uniform. By using these cost functions,
the maximum C(c) among check nodes can be minimized
and the survived check nodes can be allocated evenly to the
punctured nodes. Also, note that by minimizing C(c), the
number of the 0-SR nodes in TSR(c)(c) is very likely to be
minimized. In the example shown in Fig. 1, the pair v1 and c2

is selected according to the proposed cost functions. Also, it is
easily seen that better recovery reliability (fewer 0-SR nodes
in the SR(c)-step pruned recovery tree) is provided to v1 by
c2 than by c1, and the proposed algorithm can determine the
best choice.

Although the proposed algorithm is described in a com-
plex sequential manner for easy understanding, the pruning
procedure and the calculation of the cost functions in the
actual implementation are performed simultaneously among
all candidates by updating the cost functions in each time
to select the next puncturing node as shown in Table I. In
addition, as shown at the bottom of Table I, the stopping
set check algorithm examines the existence of a punctured
node which cannot be recovered permanently by using simple
binary operations, as in [8]. Although the proposed algorithm
looks like a refined version of [7], they are conceptually
quite different because the main cost functions of the two
algorithms are quite different. Whereas the algorithm in [7]
tries to minimize the maximum level of recoverability K and
the recovery reliability of the punctured nodes, the proposed
algorithm tries to minimize C(c), which predicts the overall
decoding performance much more accurately than the cost
function in [7] (which will be shown in Table III). In addition,
both algorithms are basically greedy; the proposed one con-
siders the overall optimization implicitly by using the terms
b(v) and k(v) in the proposed cost function C(v).

III. SIMULATION RESULT

To demonstrate the usefulness of the proposed algorithm,
we will show the performance of the proposed punctured

LDPC codes from two irregular mother LDPC codes. The
parity check matrices of the mother LDPC codes are designed
with the density evolution (DE) technique [9][10] and the pro-
gressive edge growth (PEG) algorithm [11] to get a better girth
distribution. Also, the mother LDPC codes are all systematic,
and only parity bits are candidates for puncturing for better
performance. The FER of each code is evaluated by observing
200 erroneous codewords at each Eb/N0 point using binary
phase shift keying modulation in an additive white Gaussian
noisy channel. The sum-product decoding algorithm is used,
and the maximum number of iteration is set to fifty.

The dedicated LDPC codes used in the simulation are
described in Table II. Here, a dedicated LDPC code denotes
one designed with optimized degree distribution for a given
code rate. We obtained the optimized degree distributions of
the dedicated codes at a given maximum degree using the DE
technique [9][10].

A. Puncturing from an Irregular LDPC Code with Rate=0.5,
Length=1024

We will show the performance of the punctured LDPC
codes from an irregular LDPC mother code with a block
length of 1024 and a rate of 0.5. The degree distribution
pair of the mother code is shown in Table II as can be
obtained in [9]. The performance of the punctured LDPC
codes and the dedicated LDPC codes with the rates of 0.6,
0.7, 0.8 and 0.9 are compared in Figs. 2 and 3. Due to
the randomness of the puncturing algorithm, we obtain fifty
puncturing patterns for each rate. The simulation results show
that the proposed punctured codes have much better and more
consistent performance than those obtained from the algorithm
in [7]. Also, the proposed codes do not suffer from error floor
in all cases due to the reduced randomness of the proposed
algorithm compared to that in [7]. Note that the proposed
algorithm first punctures 1-SR nodes with a lower degree
(degree 2), whereas the algorithm in [7] starts to puncture 1-

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007 3917

TABLE I

THE PROPOSED PUNCTURING ALGORITHM AND STOPPING SET CHECK

ALGORITHM

(Puncturing Algorithm)
Step 0.0 [Initialization] s(v) := 1, r(v) := 0, p(v) := 1 ∀v ∈ V,

R(c) := 0 for ∀c ∈ C, p := Np

Step 1.0 [Find candidate check nodes with the min. cost function]
Make a subset C∗ of C such that ∀c∗ ∈ C∗, R(c∗) = 0
and C(c∗) ≤ C(c) for any c ∈ C.

Step 1.1 [Find candidate variable nodes with the min. cost function]
For ∀v ∈ Vc, c ∈ C∗, make a subset V∗ of V
such that ∀v∗ ∈ V∗ , p(v∗) = 1 and C(v∗) ≤ C(v) for any
v ∈ Vc∗ , c∗ ∈ C∗.

Step 2.0 [Select a pair] Select a pair of a variable node v∗ and a check
node c∗ ∈ C∗ ∩Cv∗ .
If there is more than one pair, select one randomly.

Step 3.0 [Check the variable node to determine whether it is reserved
or not] If r(v∗) = 0, go to Step 4.0.

Step 3.1 [Check the reserved variable node to determine whether it can
be recovered by the other reserved variable nodes or not]
If r(v∗) > 0 and for ∀v ∈ Vc∗ , p(v) = 1, go to Step 4.0.

Step 3.2 [Run the stopping set check algorithm]
If r(v∗) > 0 and there exists v ∈ Vc∗ such that p(v) = 0,
run the stopping set check algorithm. If the stopping set check
is successful, go to Step 4.0.

Step 3.3 [Select another pair of a check node and a variable node]
V∗ = V∗ \ {v∗} and V = V \ {v∗}.
If V∗ is not an empty set, go to Step 2.0. Otherwise, go to
Step 1.0.

Step 4.0 [Puncture one variable node] Puncture the variable node v∗
Step 5.0 [Update all parameters] p(v∗) := 0, R(c∗) := 1, p := p−1,

s(v∗) := Σv∈Vc∗\{v∗}s(v),
r(v) := r(v) + 1 for ∀v ∈ Vc∗ \ {v∗}, and update cost
function C(c) and C(v) for ∀v ∈ V and ∀c ∈ C.

Step 6.0 [Check if there remains a variable node to be punctured] If
p = 0, then STOP. Otherwise, go to Step 1.0.

(Stopping Set Check Algorithm)
Step 0.0 [Initialization] Set p′(v) := p(v) for ∀v ∈ V, p′(v∗) := 0,

iter := max iter.
Step 1.0 [Run one iteration] For ∀v∗ ∈ V such that p′(v∗) = 0, if

p′(v) = 1 for ∀v ∈ Vc \{v∗}, ∃c ∈ Cv∗ , set p′(v∗) := 1.
Step 2.0 [Check if there remain any punctured nodes] If there exists

no v ∈ V such that p′(v) = 0, the check is successful.
Step 3.0 [Proceed to the next iteration] iter := iter−1. If iter = 0,

the check fails. Otherwise, go to step 1.0.

SR nodes with a higher degree (degree 3). 1 Thus, the overall
reliability provided from the check nodes of the proposed
punctured codes is better than that of the punctured codes
in [7], and the performance gap between the proposed codes
and the codes in [7] increases as the amount of puncturing
become larger. However, at a rate between 0.7 and 0.8, the
proposed algorithm starts to puncture variable nodes with
degree 3 in this example, which results in the reduction of the
performance gap, as shown in Fig. 3 (at the rate of 0.8). In [7],
a 0-SR node should not be punctured to guarantee that there
exists no stopping set comprised of punctured nodes. Using
the algorithm in [7], we observe that the number of 0-SR
nodes is about 640, which means that the maximum number

1With the grouping algorithm in [7], the group of 1-SR nodes contains
variable nodes with degrees 2 and 3 in this example. At the sorting algorithm
in [7], the node with the largest number of survived check nodes is selected
at step 1.0. At the beginning of the sorting algorithm [7], a degree-3 node
is selected because the number of survived check nodes of a variable node
is the same to the degree of it. Thus, the sorting step starts with degree-3
nodes. In addition, a degree-3 node is selected earlier than a degree-2 node
until one of its check nodes is allocated as a survived check node of other
variable node.

TABLE II

THE DEDICATED LDPC CODES USED IN THE SIMULATIONS.

R N Degree Distributions & Girth
0.5 1024 λ(x)=0.27253x+0.23755x2+0.07038x3+0.41953x9

ρ(x)=0.7x6+0.3x7, Girth=6, (Mother code)
0.6 854 λ(x)=0.22222x+0.36976x2+0.23501x8+0.17301x9

ρ(x)=x8, Girth=6
0.7 732 λ(x)=0.182019x+0.315058x2+0.502923x9

ρ(x)=0.449130x12+0.550870x13 , Girth=6
0.8 640 λ(x)=0.10000x+0.47143x2+0.42857x9

ρ(x)=x20, Girth=4
0.9 569 λ(x)=0.14809x+0.313269x2+0.538639x9

ρ(x)=0.95739x43+0.04261x44, Girth=4

0.3 1920 λ(x)=0.241453x+0.122945x2+0.635602x14

ρ(x)=x6, Girth=6, (Mother code)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
10

−3

10
−2

10
−1

10
0

Eb/No

F
E

R

Proposed
[7]
Dedicated

rate 0.6
rate 0.7

Fig. 2. FER performance of the proposed punctured codes (R=0.6 and 0.7,
N=854 and 732, Np=170 and 292, respectively).

of punctured nodes guaranteeing that the punctured nodes do
not form a stopping set is about 1024−640 = 384. However, to
make the puncturing pattern for the rate of 0.9, the 0-SR nodes
should be punctured and we select 0-SR nodes randomly in the
simulation for comparison because there is no consideration on
such cases in [7]. On the other hand, the proposed algorithm
is able to continue further in the puncturing process and can
puncture a reserved variable node without forming a stopping
set by using the proposed stopping set check algorithm.

Thus, it is observed from Fig. 3 that the performance gap
(either between the best ones or in ensemble-average sense
among the fifty trials) increases up to about 0.5dB at the
FER of 10−3 as the amount of puncturing increases.23 Also,
as the amount of puncturing increases up to the rate of 0.8,
the performance gaps between the proposed punctured codes

2There may be another method for selecting 0-SR nodes for the conven-
tional algorithm better than the random selection used in this paper. In this
case, the performance gap may be slightly reduced.

3The frame error considered in this simulation includes the undetected
frame error (i.e., the event when the decoded codeword satisfies all parity-
check constraint but is not the transmitted one), which is very undesirable
in practical situations. However, it is observed that a code with better FER
performance does not guarantee better undetected error performance. Thus,
it would be helpful to consider the undetected error performance as well as
the FER performance.

3918 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No

F
E

R

Proposed
[7]
Dedicated

rate 0.8

rate 0.9

Fig. 3. FER performance of the proposed punctured codes (R=0.8 and 0.9,
N=640 and 569, Np=384 and 455, respectively).

and the dedicated codes increase because a large amount of
puncturing perturbs the mother code’s structure. However, at
the rate of 0.9, the proposed punctured codes show good
performance while the dedicated code suffers from error floor.
This is mainly due to the fact that no special care, such as in
[12], is applied for lowering the error-floor in the dedicated
code. However, it is worthwhile to mention that the mother
codes used in this paper are also designed without any special
care for low error-floor and the proposed punctured codes do
not suffer from error-floor even at a very high code rate due
to the longer block length of the mother code. (Note that
this was also mentioned in [5][7].) In addition, it is observed
from Figs. 2 and 3 that the best code among the fifty trials
using the proposed algorithm shows comparable performance
to the dedicated codes over a wide range in the amount of
puncturing.

B. Puncturing from an Irregular LDPC Code with Rate=0.3,
Length=1920

Here, we use another irregular LDPC mother code with a
block length of 1920 and a rate of 0.3. The degree distribution
pair of the mother code is obtained in [9] and shown in Table
II. The performances of the proposed punctured LDPC codes
with the rates of 0.4, 0.5, 0.6 and 0.7 are compared in Fig.
4. Here, we obtained 20 puncturing patterns for each rate,
and the results show the ensemble averaged FER performance
obtained from the 20 puncturing patterns. The results show
that the proposed algorithm is better than the algorithm in
[7] in all cases. As the amount of puncturing increases, the
performance gap between the proposed algorithm and the
algorithm in [7] becomes wider. When we use the algorithm in
[7], we observe that the number of 0-SR nodes is about 992,
which means that the maximum number of punctured nodes
without forming a stopping set is about 1920 − 992 = 928.
Thus, at a rate equal to or higher than 0.6 (Np=960), the
performance gap becomes extremely large as the number of
the punctured nodes increases. In addition, the performance
gap reduction observed in Fig. 3 does not appear in this
example because the proposed algorithm begins to puncture

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
10

−3

10
−2

10
−1

10
0

Eb/No

A
ve

ra
ge

 F
E

R

Proposed
[7]
Dedicated mother code

rate 0.3

rate 0.4

rate 0.5
rate 0.6

rate 0.7

Fig. 4. Averaged FER performance of the proposed punctured codes (R=0.4,
0.5, 0.6 and 0.7, Np=480, 768, 960, and 1098, respectively).

TABLE III

max K AND max C(c) OF THE PROPOSED PUNCTURED CODES AND THE

CODES IN [7].

Punctured rate A B A-B C D C-D
mother code (n,k)=(1024,512)/ R=0.5

0.6 Proposed 14 14 0 1 1 0
0.6 [7] 19 26 7 1 1 0
0.7 Proposed 22 28 6 2 2 0
0.7 [7] 29 36 7 1 1 0
0.8 Proposed 56 114 58 7 4 3
0.8 [7] 67 166 99 6 3 3
0.9 Proposed 206 580 374 15 7 8
0.9 [7] 458 1730 1272 23 9 14

mother code (n,k)=(1920,576)/R=0.3
0.4 Proposed 12 12 0 1 1 0
0.4 [7] 22 28 6 1 1 0
0.5 Proposed 26 32 6 3 2 1
0.5 [7] 27 42 15 2 1 1
0.6 Proposed 54 87 33 8 4 4
0.6 [7] 102 142 40 7 4 3
0.7 Proposed 106 234 128 10 6 4
0.7 [7] 210 352 142 10 8 3
A: min max C(c) B: max max C(c)
C: min max K D: max max K

variable nodes with degree 3 from the rate of 0.6, at which
the performance gap has already become sufficiently large.

In Table III, we compared the conventional puncturing [7]
with the proposed one in terms of both C(c) (the proposed
cost function) and the maximum level of recoverability K (the
cost function in [7]). Here, maxC(c) denotes the maximum
value of C(c) among all check nodes in a punctured code
and min (max){maxC(c)} denotes the minimum (maximum)
value of {maxC(c)} among the fifty puncturing patterns.
From the table, one can easily see that C(c) estimates the
actual performance much more accurately than K does. The
difference between the maximum and the minimum is related
with the performance deviation of the fifty (twenty) FER
curves. Although not shown explicitly, we can observe a
tendency in the relationship between the actual performance of
a code and its maxC(c) among the fifty trials. Thus, without
performing a simulation, we can greatly reduce the number of

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 11, NOVEMBER 2007 3919

candidates to obtain the best code. For example, among the
fifty trials with the proposed algorithm for the rate of 0.9, we
can find fairly good codes whose performance gaps (to the
best code among them) are within 0.1dB at the FER of 0.01
by selecting the best ten codes in terms of maxC(c).

IV. CONCLUSION

This paper proposed an efficient puncturing method for
rate-compatible LDPC codes based on the proposed cost
functions. The proposed algorithm improves the performance
of the punctured LDPC code by i) maximizing the minimum
initial reliability among all check nodes, ii) allocating survived
check nodes evenly to punctured nodes, and iii) preventing the
formation of a stopping set from punctured nodes to increase
the maximum number of puncturing variable nodes without
serious performance degradation. Simulation results showed
that the performance of the proposed punctured LDPC codes
is much better than those of existing punctured LDPC codes.
To the best knowledge of the authors, the proposed puncturing
algorithm provides the best ensemble average performance
and the smallest performance deviation of any puncturing
algorithm. In addition, using the proposed algorithm, we can
obtain sufficiently good rate-compatible LDPC codes with
rates up to 5/6 or 7/8 from a single mother code, which is
the highest code rate used in commercial standards [1][2].
Thus, the proposed punctured LDPC codes can be applied
to practical mobile communication systems, such as IEEE
802.16e, to reduce the complexity of saving various LDPC
codes or to provide various types of HARQ techniques for
better performance.

V. ACKNOWLEDGEMENT

This work was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Informa-

tion Technology Research Center) support program supervised
by the IITA (Institute of Information Technology Advance-
ment) in part by (IITA-2007-(C1090-0701-0003)) and in part
by (IITA-2006-(C1090-0603-0011)).

REFERENCES

[1] IEEE P802.16e, IEEE Standard for Local and Metropolitan area networks
Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access
System, Feb. 2006.

[2] 3GPP, TR 25.848: Physical layer aspects of UTRA High Speed Downlink
Packet Access, v4.0.0, March 2001.

[3] J. Ha, J. Kim, and S. W. McLaughlin, “Optimal puncturing distribution
for rate compatible low density parity check code,” IEEE Trans. Inf.
Theory, vol. 50, no. 11, pp. 2824–2836, Nov. 2004.

[4] M. R. Yazdani and A. H. Banihashemi, “On construction of rate-
compatible low-density parity check codes,” IEEE Commun. Lett., vol.
8, no. 3, pp. 159–161, March 2004.

[5] J. Ha, J. Kim, and S. W. McLaughlin, “Puncturing for finite length low-
density parity-check codes,” in Proc. Inter. Symp. Inform. Theory (ISIT),
pp. 151, June 2004.

[6] E. Choi, S. Suh, and J. Kim, “Rate-compatible puncturing for low-density
parity-check codes with dual-diagonal parity structure,” in Proc. IEEE
Symp. Person. Indoor Mobile Radio Commun., vol. 4, pp. 2642–2646,
Sept. 2005.

[7] J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible
punctured low-density parity-check codes with short block lengths,” IEEE
Trans. Inf. Theory, vol. 52, no. 2, pp. 728–738, Feb. 2006.

[8] S. H. Lee, K. S. Kim, Y. H. Kim, J. Y. Ahn, “A cycle search algorithm
based on a message-passing for the design of good LDPC codes,” IEICE
Trans. Fundamentals, vol. E88-A, no. 6, pp. 1599–1604, June 2005.

[9] http://lthcwww.epfl.ch/research/ldpcopt/
[10] S. Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of sum-

product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670,
Feb. 2001.

[11] X. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth
Tanner graphs,” in Proc. IEEE Global Commun. Confer. (GLOBECOM),
pp. 995–1001, Nov. 2001.

[12] S. H. Lee, K. S Kim, J. K. Kwon, Y. H. Kim, and J. Y. Ahn, “Design
of an LDPC code with low error floor,” in Proc. Inter. Symp. Inform.
Theory (ISIT), pp. 990–994, Sept. 2005.

