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Comment on Iterative Refinement: The off-diagonal elements of
the r + 1th column of Rz and Ry represent blurring of the two
subspaces. Steps 3 and 4 work to drive these elements toward zero,
thus resolving the subspaces. Together, Steps 3 and 4 constitute a
single TQR step (in the case of TQR-SVD) and a single refinement
step (in the case of RO-FST).

Now, recall that we started with span([V,iv,41]) =
span([Vsi¥,41]). Bach algorithm then rotated these columns
with the result that /.11 = ¥.,;. Thus, span(V’'s) = span(V})
(i.e. the two algorithms compute the same subspace). Finally, note
that the structure of (4) is the same as in (2). Thus, we may repeat
Steps 3 and 4 to further resolve the subspaces while preserving the
structure. In [1], it is shown that Steps 3 and 4 of the TQR algorithm
are equivalent to an iteration of the symmetric QR algorithm. Thus,
the FST refinement step is also equivalent to the symmetric QR
algorithm (in terms of separating the two subspaces).

Step 5: In this final step, the off-diagonal elements of column
r + 1 are set to zero and the noise subspace is made spherical by
reaveraging 7,

52 = (N—r-1)57 4+
" N-r ’
All that remains now is to show that zeroing the off-diagonal elements
of column 7 + 1 does not alter the relationship between the two
factorizations. To do this, carry out the multiplication on each side
of (4) and consider the terms corresponding to v',4;

crit 1H " 1H
Ugw v +c g Ve
T tH " tH _ H
=U, -w-vr+1+cru,+1-v,+1 = Ra.

Now, observe that setting w = W = 0 does not alter the equality. [

1. CONCLUSION

We have shown that refinement only FST (RO-FST) produces the
same subspaces as the adaptive TQR-SVD algorithm, while reducing
the complexity. The tradeoffs for this reduction in complexity are as
follows:

1) RO-FST does not track each individual singular vector. Instead,
it tracks an orthonormal basis for the subspace spanned by
the dominant singular vectors. Fortunately, this is all that is
necessary for projection-based methods. This includes MUSIC,
projection nulling, and the great majority of high resolution
methods appearing in the literature.

2) RO-FST does not explicitly estimate the full set of dominant
singular values. Fortunately, this is not a serious limitation be-
cause most high resolution methods do not require knowledge
of any dominant singular values unless the rank of the dominant
subspace must be tracked along with its subspace. Furthermore,
even in situations where the rank must be tracked, it is usually
sufficient to estimate only the smallest of the dominant singular
values. RO-FST can do this in only O(r?) additional operations
by using a condition estimator as described in [5].
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Identification of Nonminimum Phase FIR Systems
Using the Third- and Fourth-Order Cumulants

Yoon Jeong Na, Kwang Soon Kim, lickho Song, and Taehyun Kim

Abstract—An algorithm is proposed for MA system identification using
the third- and fourth-order cumulants. Asymmetric non-Gaussian input
and Gaussian measurement noise are assumed. Simulation results show
that the proposed algorithm is useful when the characteristics of noise
are not known or when the SNR is low.

1. INTRODUCTION

Various methods for the identification of MA systems using cu-
mulants have recently been developed by many authors [1]-[8]. For
example, the GM-method (Giannakis-Mendel method) was proposed
in [3] and modified in [4] to overcome certain deficiencies. In [6],
another modified GM-method was proposed to avoid numerical ill-
conditioning, and a detailed analysis of the performance of the
GM-method has been presented in [7].

The GM-method and its modifications use the correlation and third-
order (or fourth-order, depending on the input distribution) cumulants.
Because correlation is not blind to Gaussian noise, some equations
containing estimates corrupted by the Gaussian measurement noise
should be discarded in these methods. As a result, the number
of equations available is reduced, and the performance of these
algorithms degrades when the data are corrupted by Gaussian noise. -
In addition, when the noise is colored Gaussian, the number of
equations to be discarded increases, resulting in much more degraded
performance.

‘We present an algorithm to identify MA systems driven by inde-
pendent and identically distributed (i.i.d.) non-Gaussian input. The
proposed algorithm has the following properties.

* 1) The algorithm uses the third- and fourth-order cumulants but

not the correlation.
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w(k) y(k) 2(k)
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Fig. 1. Single-channel system.

* 2) The algorithm is blind to Gaussian measurement noise even
if it is not known whether the noise is white or colored.

¢ 3) The algorithm is useful when the characteristics of noise are
not known or when the signal-to-noise ratio (SNR) is low.

II. PROBLEM DEFINITION AND ALGORITEM DERIVATION

In the MA channel model of Fig. 1, it is assumed that the channel
is stable, linear, and time invariant. The output z(k) is expressed as
the following MA(g) model,

q
(k) = y(k) + w(k) = Y hG)o(k — i) + w(k) 4))
=0
where y(k) is the system output, {h(k)} is the impulse response of
the system with transfer function H(z), and the input signal {v(k)}
is ii.d. non-Gaussian and has an asymmetric probability density
function (pdf) with E{v(k)} = 0, vs, = E{v*(k)} # 0, and
Yoo 2 E{v'(k)} — 3[E{v2(k)}]> # 0. The measurement noise
{w(k)} is Gaussian and independent of {v(k)}. We also assume that
the system order ¢ is known or has already been estimated by some
methods [9]. (The problem of system order overfit [7] is not addressed
in this paper.) Our objective is to estimate h(k), k = 1,2,---, g, from
the third- and fourth-order cumulants of {z(k)}.
The third- and fourth-order cumulants of {y(k)} are

c3y(m1,me) = 3,0 Y A(i)h(i + m1)h(i + niz)

=0

)
and
q
cay(mi,ma,ma) = ya,0 3 h(i)R(i+mi)h(i+ms)h(i+ms) (3)
=0

respectively. As in [7], these can be straightforwardly extended to
complex valued systems. The third-order cumulant at lags m and
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m + n can be expressed as

q
czy(m,m+n) =73, Z h(i)g(i + m;n)
=0
where g(k;n) = h(k)h(k + n). Let G(z;n) and Cs,,(z;n) denote
the z transforms of {g(k;n)} and {cs 4(m,m + n)}, respectively,
forn = 0,1,2,---.q. Then, from (4) we get

@

g q
Csy(z;n) = 73,0 Z Zh(i)g(i +m;n):"™

m=-—gq i=0
= 1,.0H(z")G(z;n). Q)

Similarly, let us define the diagonal slice of the fourth-order
cumulant

q
day(m) £ coy(mm,m) =74, Zh(z’)h%‘ +m). (6
i=0
Then, the z transform of {ds,,(m)} is

Ciy(2)=mw D Y h@R(i+m)z™"

m=—gq i=0
= v4,0H (27" ) Hs(2) 0}

where Hy(z) is the z transform of {h*(k)}. By eliminating H(z~")
from (5) and (7), we have

Cs,y(z3n)H3(2) + €Ca,y (2)G(z;m) = 0 (8)
where € 2 —v3 ,/71.,. When n = 0, (8) reduces to
Cg,y(z;O)H;;(z)+e.C4’y(z)H2(z) =0 ®

where H;(z) = G(z;0) denotes the z transform of {h?(k)}. The
inverse 2 transform of C3,y(2;0), d3 ,(m) = c3,y(m,m), is called
the diagonal slice of the third-order cumulant. Using the definition
of z transform, we can write (9) as
q
(Y dsy(m)z™™)

QK@=

q 9
+e O R @27 ( Y day(m)z™™)=0. (10

i=0 m=—gq

x = [e eh®(1) eh®(2) --- eh®(q) B*(1) K*(2) --- k*(q) eh(q)],

b =1[dsy(—¢) dsy(—g+1) -+ d34(g) 0 -+ 0c3,(q,9) c3y(g~1,9) -+~ ¢5,4(0,q) 0 --- 0],

— Al
A= 2]

[ day(—q) 0 0 0 0 0
diy(—g+1) d‘i,y(“‘I) 0 da,y(—q) 0 0

ds,4(0) day(~1) diy(—q) day(-1) dsy(—¢q) O

Ay = : : : : : :
da,y(gq) day(g—1) day(0) dsy(g—1) d3y(0) 0

0 dsy(q) dsy(1) ds,y(q) dsy(l) O

0 0 ds y(2) 0 d3,4(2) ) 0

- 0 day(q) 0 dayle) O
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TABLE 1
SIMULATION REsuLTs FrROM 30 MoONTE CARLO RUNS (g =2)

Para- Clyg, k) GMT1 GMT?2 Proposed || SNR
meter (NF) [ (WG) | (NF) | (WG ) | method

h(1) | mean | —1.424 | —1.402 [ —1.410 [ —1.376 | —1.407 | —1.465 00
~1.40 [4 0.099 0.073 0.079 0.118 0.177 0.163

h(2) |mean | 1.018 | 0.994 | 0.986 | 0.991 | 0.998 0.980

0.98 o 0.109. | 0.050 | 0.038 | 0.086 | 0.110 0.069

k(1) | mean | -1.433 | —1.305 -1.407 ] —-1.026 | —1.389 | -1.430 10dB
-140| o 0.137 | 0.069 | 0.083 | 0.071 | 0.218 0.138 white

h(2) [ mean| 1.017 1.004 | 0.985 | 0.892 | 0.977 0.956

0.98 [ 0.150 0.053 0.045 0.097 0.149 0.086

h(1) | mean | —1.429 | —~1.306 | —1.458 | —0.941 ~1.494 | -1.422 10dB
~1.40 a 0.132 0.075 0.094 0.069 0.247 0.109 colored

h(2) | mean | 1.014 | 1.014 0.984 0.835 0.974 0.951

0.98 o 0.139 0.053 0.045 0.090 0.149 0.081

h(1) | mean [ —1.455 | —1.255 —1.406 | —0.596 | ~1.355 | —1.331 5dB
—1.40 [4 0.209 0.190 0.097 0.060 0.307 0.351 white

h(2) |mean| 1.031 1.188 | 0.987 | 0.685 | 0.961 0.926

0.98 a 0.221 0.202 0.059 0.097 0.183 0.111

h(1) | mean | -1.450 | ~1.292 | -1.627 | —0.456 | —1.730 -1.327 5dB
-140| o 0.205 | 1.005 | 0.154 | 0.064 | 0.411 0.176 colored

h(2) | mean 1.024 1.525 0.989 0.536 0.951 0.913

0.98 a 0.202 1.130 0.056 0.092 0.208 0.105

h{1) | mean | —-1.726 | —0.461 | —1.354 | —0.207 [ ~1.230 | -1.063 0dB
-1.40 [4 1.317 2.692 0.530 0.076 0.569 0.520 white

h(2) | mean| 1273 | -1.119| 0965 | 0.369 [ 0.915 0.851

0.98 4 1.234 16.697 | 0.238 0.124 0.237 0.126

h(1) | mean | —1.642 | —0.021 | ~3.566 | —0.003 | —2.608 | —1.067 0dB
—1.40 o 0.926 0.700 4.610 0.111 1.959 0.333 colored

h(2) {mean | 1.172 | -1.010| 0.834 0.115 0.856 0.848

0.98 o 0.783 2.959 1.286 0.110 0.442 0.101

Without loss of generality, we take h{0) = 1. Then, we obtain from
(10

Zh3(i)d3,u(1 —i)+ Zehz(i)d4,y(1 -9

—ds (1), for—g <1<2q.

(83

Since this system of 3¢ + 1 equations alone does mot produce
a unique least square solution to the 2¢ + 1 unknown variables
e,€h?(k),h*(k),k = 1,2,---,q when the nonzero coefficients of
the MA system are all unity, let us obtain more equations.

If we let n = ¢ in (8), and then take the same steps as when
n = 0, we get

q
S R (i)eay (=1 @) +eh(g)day (1) = —c3,y (=1 9), for—g <1< g

i=1 (12)
where we used the fact that 3,y (I—i,l —i+¢q) = ¢34 (i —1, ¢). Note
that to use the third- and fourth-order cumulants simultaneously, the
input sequence is assuimed to be asymmetrically distributed: other-
wise, the proposed algorithm may be used after some transformation
[11] of the input sequence. Combining (11) and (12), we get the
desired system of 5q + 2 equations for 2¢ + 2 unknown variables

where the first group of equalities at the bottom of the previous page
are a (3¢ + 1) x (2¢ + 2) matrix, and A2, as given at the bottom of
the page, is a (2¢ + 1) x (2¢ + 2) matrix.
Since A has full rank 2g+ 2 as shown in the Appendix, the unique
least squares solution of (13) is
k= —(A'A)" A%, 14)
Here, h2(k) and h3(k) are treated to be independent as in [3), [4],
[6], although there might exist some problems as described in [7].
Since the estimates of h%(k) do not tell us the sign of A(k) and the
division by the estimate of € as a process of obtaining the estimates
of h2(k) may give rise to a very large magnitude of estimates when
€ is estimated to have small absolute value, we will take

Rk) = YRR

as the estimate of h(k).

When Gaussian measurement noise w(k) is added to y(k), we can
still use (14) by replacing the third- and fourth-order cumulants of
y(k) with those of z(k), because c3 . (m1,m2) = c3,,(m1,m2) and
c4,z(m1,ma,m3) = ca,y(m1,ma,m3). This is the advantage of the
proposed method: note that the algorithms using autocorrelation may
be affected significantly by Gaussian measurement noise, because

15

Ax=-b (13)  ca,:(m) = c2,y(m) + c2,w(m).

[0 0 0 0 0 ds,y(—9)

0 0 cay(a,9) 0 0 dsy(—~q+1)

0 0 c34(0-1,9) ca,y(g,9) 0 di,y(—q+2)

Aa = : : : M . .

70 0 eyl e3,4(2,9) c3,4(4:9) da,4(0)

0 0 ¢3,5(0,9) c3,4(1,9) cay(g—1,9) da,y(1)

L0 0 csy(~g+1,9) c3y(—q+2,9) c3,4(0,9) diy(q) |
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TABLE II
SIMULATION RESuULTS FrROM 30 MONTE CARLO RuNs (g =3)
Para- C(q, k) GMT1 GMT2 Proposed || SNR
meter (NF) | (WG) | (NF) T (WG) | method
h(1) |mean | 0.875 | 0.870 | 0.879 | 0.867 | 0.883 0.867 00
0.90 [4 0.090 | 0.084 | 0.076 | 0.103 | 0.079 0.087
h(2) [mean| 0.798 | 0.766 | 0.747 | 0.764 | 0.743 0.745
0.79 4 0.099 0.104 | 0.139 0.108 0.148 0.053
h(3) | mean | —0.762 | —0.719 | —0.702 | ~0.713 | —0.724 | —0.726
-0.745.| o 0.135 0.068 | 0.098 0.091 0.101 0.108
h(1) |mean | 0.891 | 0.862 | 0.876 | 0.849 | 0.876 0.858 10dB
0.90 4 0.113 | 0.088 | 0.081 | 0.129 | 0.086 0.102 white
h(2) | mean | 0.808 0.796 0.745 0.832 | 0.729 0.736
0.79 g 0.114 0.116 0.158 0.137 | 0.155 0.067
h(3) [mean | —0.778 | -0.733 | —0.703 | —0.751 | —0.715 | —0.711
—0.745 o 0.149 0.073 0.109 | 0.114 0.111 0.128
h(1) |mean| 0.877 | 0.839 | 0.871 | 0.805 [ 0.950 0.852 10dB
0.90 a 0.109 | 0.084 | 0.087 | 0.132 | 0.102 0.096 colored
R(2) |mean [ 0.793 | 0.766 | 0.634 | 0.754 | 0.650 | 0.744
0.79 4 0.114 | 0.104 | 0.261 | 0.141 | 0.161 0.070
k(3) | mean | —0.778 | ~0.687 | —0.623 | —0.650 | —0.670 | —0.715
—0.745 o 0.139 0.067 | 0.107 | 0.093 0.120 0.127
h(1) |mean| 0.908 | 0.861 | 0.870 [ 0.744 | 0.866 0.853 5dB
0.90 a 0.151 | 0.108 | 0.100 | 0.140 | 0.102 0.110 white
h{(2) | mean | 0.818 0.861 0.752 | 0.869 0.722 0.732
0.79 o 0.154 | 0.151 | 0.191 | 0.185 | 0.188 0.076
h(3) |mean | —-0.794 | —0.758 [ —0.699 | —0.748 | —0.708 | —0.702
~0.745 o 0.188 0.095 0.136 | 0,115 | 0.133 0.145
h(1) {mean| 0.880 | 0.790 | 0.832 | 0.617 | 1.046 0.839 5dB
0.90 a 0.134 | 0.093 | 0.109 | 0.155 | 0.176 '| 0.112 colored
h(2) | mean | 0.793 0.763 [ -0.207 | 0.687 | 0.488 0.737
0.79 [ 0.151 | 0.117 | 0.620 | 0.153 | 0.188 0.088
h(3) [mean | -0.791 | —0.628 | —0.159 | —=0.497 | —0.501 | —0.706
-0.745| o 0.169 | 0.076 | 0.469 | 0.095 | 0.151 0.148
h(l) | mean | 0.964 0.907 0.825 0.468 | 0.793 0.783 0dB
0.90 a 0.309 0.231 0.289 [ 0.206 | 0.158 0.294 white
h(2) | mean | 0.866 1.022 0.739 { 0.903 [ 0.717 0.693
0.79 a 0.317 | 0.369 | 0.525 | 0.308 | 0.340 0.144
h(3) [ mean | ~0.853 | —0.821 | —0.706 | —0.681 | —0.670 | —0.646
—0.745 o 0.360 0.211 0.255 0.184 0.208 0.258
h(1) | mean | 0908 | 0.517 | 0.295 | 0.195 | 0.573 0.690 0dB
0.90 a 0.233 | 1.041 | 1.373 | 0.181 | 0.544 0.354 colored
h(2) |mean | 0.830 [ 0.886 | ~5.794| 0.505 | 0.348 0.664
0.79 4 0.296 | 1.260 | 20.203 | 0.159 | 0.177 0.246
~(3) [mean| —0.854 | —0.429 | 4.713 | —0.191 | 0.091 | -0.613
-0.745| o 0.343 | 0.313 | 14.263 | 0.084 | 0.238 0.292
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II. SIMULATION RESULTS

Under various noise environments, the proposed algorithm is
compared with the C(q,k), GMT1 [4], and GMT2 [5] methods.
The C(g, k) method estimates the parameters of MA systems from
cumulants with a simple calculation [1]. The GMT! and GMT2
methods use the second- and third-order (or fourth-order depending
on the input distribution) cumulants.

As the input sequence {v(k)}, an independent exponentially dis-
tributed zero-mean random sequence (0 =1, Y3, = 2, and
74,0 = 6) was generated, and Gaussian measurement noise was added
to the system output. We performed 30 Monte Carlo (MC) runs for
each of the examples, where 5120 data were used to estimate the
third- and fourth-order cumulants for each run.

Tables I and II show the true and estimated MA parameters and
the standard deviation o of the estimated parameters. The SNR was
defined as

_ T P’0)
SNR = lOlogm(—E{T(k)}). (16)
When it is known that the noise is a colored Gaussian MA (p)
sequence, where p < 7 = [(g—1)/2], the GMT1 and GMT2 methods
can produce consistent estimates after discarding some equations,
resulting in much degraded performance. If p > g, however, there
is no way to obtain consistent estimates in the GMT1 and GMT2

methods. ‘On the contrary, the proposed method gives consistent
estimates in this case also. The colored noise sequences used in the
following examples were generated to satisfy p > §. Therefore, we
considered the GMT1 and GMT2 methods operating in noise-free
(NF) and white-Gaussian (WG) noise cases.

Example 1: The true MA system is

y(k) = v(k) — L4v(k — 1) + 0.98v(k — 2)

with zeroes at 0.7 £ 0.77, and the colored méasurement noise is
generated by ‘

w(k) = e(k) + 0.5e(k — 1) — 0.25e(k — 2),

where e(k) is ii.d. Gaussian. Results from an MC experiment are
given in Table L. In Table I, (NF) and (WG) in the columns of GMT1
and GMT?2 mean that these methods are used assuming the noise-
free and white-Gaussian noise environment, respectively. The GMT1
method sometimes becomes unstable and produces estimates with
very large magnitude; the main motivation of the GMT2 method was
to overcome such instability [S]. Table I shows that the performance
of the GMT! and GMT2 methods depends significantly on the
knowledge of the noise environment. On the contrary, the proposed
method shows consistent performance without having to assume a
priori knowledge of noise environment. In addition, when the noise
is colored, the GMT1 and GMT2 methods are quite affected; the
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proposed algorithm is less affected than the GMT1 or GMT2 methods
for colored noise.
Example 2: The true MA system is

y(k) = v(k) + 0.9v(k — 1) + 0.79v(k — 2) — 0.745v(k — 3)

with zeroes at 0.5 and —0.7 £ ¢, and the colored measurement noise
is generated by

w(k) = e(k) + 0.5e(k — 1) — 0.25¢(k — 2) + 0.5e(k — 3).

Results from an MC experiment are given in Table II. In Example 2,
we can make observations similar to those made in Example 1.
Normally, more number of data and MC runs are necessary to
analyze the performance of the proposed method than for other
methods. The proposed method is more useful for colored Gaussian,
low SNR, asymmetric input, large data sample, and no channel
diversity. (An application of the second order statistic for channel
diversity environment has recently been investigated in {11] and [12]).

IV. CONCLUDING REMARKS

A cumulant-based method with which we can identify MA systems
was considered. The proposed algorithm uses the third- and fourth-
order cumulants simultaneously at the expense of a large number
of data and more processing time. The input sequence was assumed
to have asymmetric pdf: when the input sequence is symmetrically
distributed, the proposed algorithm may be used after some transfor-
mation of the input sequence.

Simulation results showed that the proposed algorithm was more
useful than the other methods: the proposed algorithm showed
satisfactory performance that did not depend on the knowledge of
whether the measurement noise was white or colored Gaussian.

APPENDIX
. _ |A1] _ |Dsa Ds
Let us first rewrite A as A = [Az] = [OL Cs]’ where
A, = [D; D3], A2 = [0 Cs],
da,y(—q) 0 0 ]
diy(—g+1) day(-q) --- 0
d‘l,y(o) dﬂgy(_l) d4,y(_‘1)
Dy = : : i
day(9) diy(g—1) ds,4(0)
0 d,y(q) day(1) |
0. 0 ds,y(2)
L o 0 day(q) |

is a (3g+1) X (g+1) matrix, and Oy, is the all-zero (2¢+1) x (g+1)
matrix. It is easy to see that the ranks of D4 and C3s are both ¢+ 1.
Thus, the rank of A is 2¢ + 2.
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Fourth-Order Criteria for Blind Sources Separation

A. Mansour and C. Jutten

Abstract—Various criteria based on contrast functions as well as higher
order statistics are used for solving the problem of blind separation of
sources. In this correspondence, for the case of instantaneous mixtures
of two sources, it is proved that the minimization or the cancellation
of a really simple criterion, a fourth-order cross-cumulant, leads to a
set of solutions whose spurious ones can be simply cancelled by using a
decorrelation.

1. INTRODUCTION

A. Problem Description

The problem of blind separation of independent sources consists
in retrieving the sources from the observation of unknown mixtures
of the unknown sources. It is only assumed that the sources are
non-Gaussian, and not necessarily i.i.d., otherwise solutions based
on second-order statistics are possible [1], [2]. Separation of sources
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