Locally Optimum User Detection in Nakagami Interference
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Abstract-— Detection of the existence of a desired wuser is
considered in this paper. We assume that the signal to noise
ratio is high enough to ignore the effects of noise compared
with those of the interference by other users. The inter-user
interference and user signals are modeled by the Nakagami
model. The observation model for this situation is proposed,
the locally optimum test statistic is derived under the model,
and the asymptotic performance of the test statistic is com-
pared with that of the envelope detector. We show that the
locally optimum detector has performance better than the
conventional envelope detector.
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I. INTRODUCTION

As mobile communications get in much use, multiple ac-
cess (MA) techniques become more important, because the
frequency resources are quite restricted. In order to accom-
modate more users in the restricted frequency band. many
MA techniques are emerging, e.g., the frequency hopped
(FH) and direct sequence (DS) spread spectrum (SS) com-
munication systems [1]. In these MA communication sys-
tems, however, the inter-user interference (IUI) problem is
unavoidable. Because modern commercial communication
guarantees quite high signal to noise ratio (SNR), it can be
justified to assume that the IUI is the only disturbance [2].
Actually, the IUT affects the performance of cellular mobile
communication systems much more than noise does [3].

In MA communication systems, we are to detect the pres-
ence of the desired user in the interference by neighboring
other users. Especially, we focus on the situation where the
desired user signal is very weak when compared with the TUL
This problem is quite important to get higher connection
probability in various mobile circumstances. The locally op-
timum (LO) detection techuique has been shown to be useful
when the SNR is very low. The LO detector maximizes the
slope of the power function when the SNR is zero, and hence
is expected to show the best performance when the SNR is
low. Tt is also noteworthy that the LO detector can always
be acquired unlike the uniformly most powerful (UMP) or
optimum detector. The LO detector has also been shown
to be the power-series expansion of the likelihood function
truncated at the first nonzero term [4].

The main goal of this paper is to get a better user signal
detector than the conventional envelope detector [5]. For this
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purpose, we propose an obscervation model for the detection
of the desired user in the IUL The Nakagami m-distribution
[6] is used for modeling both the user signal and the IUIL This
model assume the Nakagami fading environment. This LO
detector can be used to improve the counection probability
and lessen the power consumption.

II. THE OBSERVATION MODEL
Let us cousider the observation model

X; =08 +Wi=0Si+» ILj i=12--,m, (1)
J=1

where X; is the envelope of the receiver output at the 4-th
sampling instant, mn; is the number of neighboring users at
the i-th instant, 8 > 0 is the signal strength parameter, and
n 1s the sample size. Here, S; is from the desired user and I; ;
is the interference term from the j-th neighboring user at the
#-th sampling instant. Let us denote X = (X1, X2,--, Xh).
S =(51,9,-.5,), and W = (W, W,,---  W,,).

Based on the fact that nouselective fading of radio sig-
nal envelope is adequately represented by the Nakagami m-
distribution, we assume that S; and I; ; are Nakagami ran-
dom: variables. It is not possible, however, to get the exact
distribution of W;. a sum of Nakagami random variables I ;.
Note that we cannot derive the LO test statistic without the
interference distribution. It is reasonable to assume that the
interference of the nearest user is dominant, that is,

s

W; = ZIZJ = Ii,maa:- (2)
=

where Ij maz is the most powerful interference. With this
approximation, we can assume that W, is also a Nakagami
random variable.

The probability density function (pdf) of the Nakagai
m-distribution is

" 2y _ 2 mN\T o _m
flelm,o%) = Tom) (Jz) x exp( i ) {3)

where z > 0, m > 1/2 is the fading depth parameter, and
02 is the mean power parameter. Note that the larger m



meauns the more constrained fluctuation, and the case m = 1
subsumes the Rayleigh fading.

We assumie that both W, and S;, i = 1,2, . n, are inde-
pendent and identically distributed (i.i.d.) random variables,
and W; and §; are independent of each other. We also as-
sume that W; and S; follow the Nakagami in-distributions
with parameter sets (1n,02) and (mg,0%). respectively. Let
us denote the pdf’s of W; and 8; by fw and fg, respectively.

Let us now consider a binary hypothesis testing problem.
Under the null hypothesis H, X; consists only of the IUI
term W; (¢ = 0), and under the alternative hypothesis K, X;
consists of the desired user signal S; and the IUT W; (6 > 0).
Based on this consideration, the hypothesis problem

H:Xi=Wi, ’I:=1,2,'--,77,, (4)

Versus
K:X;=60S5,+W,, i=1,2,---,n, (5)
can be considered as a parameter test
H:0=0, (6)
versus
K:0>0. (7)

The joint pdf of X;. 4= 1,2,---,n, under H and K are

H:¢(z) = fIfW(fb'z') (8)
i=1
and
K :¢(z)= / f[fW(T'i — 0s;) fs(si)ds;. (9)
=1
For later use, let us define the LO nonlinearity
9(0) = =i @)/ fw () = 2o~ Gm-1)1  (10)

and the Fisher’s information of fyy

I(fw) = / (9(2)} fw (2)ds. (11)

III. LocaLLy OpTIMUM DETECTOR TEST STATISTIC

Since it is generally not possible to obtain uniformly most
powerful (UMP) detectors, we can concentrate on the prob-
lem of designing detectors for weak signals, which results in
LO detectors. Having a basis in the generalized Neyman-
Pearson lemma, an LO detector has maximum slope for the
detector power function at the origin (8 = 0) in the class of
all detectors that have its false-alarm probability. The power
of an LO detector is gnaranteed under mild conditions to be
no smaller than that of other detectors at least for # in some
nonnull interval (0,6x7) [4] [7] [8].
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From the generalized Neyman-Pearson lemima, the LO de-
tector test statistic may be obtained as
d

1 .
ST o2 ag )

i=1

Tro(X)

Noting that E{S;} is the same for all ¢ = 1,2.-- -, n, the LO
detector statistic can be represented by

k3

Tro(X) = Y g(Xi)
=1
=
n 1 1
+(2m—1)2{0—2X,;vY}. (13)

i=1

Noting that the envelope (EV) detector test statistic is
T 1
Tev(X) = 21 =X, (14)
=

we have

Tro(X) = TEV(X)+(2m._1)Z{;_2Xi_%}

=1

T 1
= 2mTgy(X)+(1-2m) Y e (15)
=1 ?

That is, Tpo(X) has an additional term containing (X; and)
1/X;, and Tpo(X) = Tgy (X) when m = 1/2. It is notewor-
thy that m = 1/2 means the most fluctuated fading environ-
ment. It is casy to expect that the additional term would
improve the performance of the LO detector over the EV
detector when m > 1/2. This LO detector test statistic de- -
penuds only on the parameters of W, m and o2, not on those
of S;, mg and 0%: what we need to know to construct the
LO detector is thus information ouly about the IUI, and we
need not know the statistics of the desired user signal. Fig-
ure 1 shows the LO nonlinearity g(z) for various values of m.
It is interesting to see that the shape of the LO nonlinearity
does not change with 1n: only the slope changes.

IV. AsyMPTOTIC PERFORMANCE OF THE LOCALLY
OpTiMUM DETECTOR
One of the most commonly-used measures of relative
asymptotic performance of detectors is the asymptotic rela-
tive efficiency (ARE) [4]. The ARE; of two detectors D,
and Ds based on test statistics 77 and T» can be expressed
under some regularity conditions as the ratio

ARE;, = £ (16)

2

where
2
dB{T;|6} _
& = lim[ i |a_o]
;=

L# 7= o1 17
wote aV{TIe =0} (17)



The LO Noniinearity
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Fig. 1. The LO nonlinearity when ¢2 = 1, m = 1 (solid), m = 2
(dotted), and m = 3 (dashed).

are the efficacies of the detectors. The detectors we will
consider here are the LO and EV detectors.

The efficacy of the LO detector can be derived via the steps
similar to those in [4]. Here we will assume that m > 1/2
for the LO detector, because m = 1/2 means Tro(X) =
Teyv(X).

Noting that

. od
lim @EK{TLO} = Ex{Tio} = nd(fw) (18)
and
Exg{Tio} =n /00 g@)fw(z)dz =0, m>1/2, (19)
0

the efficacy of the LO detector is

E%{Tfo} — Va{Tro} -
TLVH{TLo} n

Similaily, the efficacy of the EV detector can be derived. It
is easy to show that

I(fw). (20)

gLO =

. d n
gl_)n(l) E@EK{TEV} = Eg{TevTio} = = (21)
and
n
Va{Tov} = En{Thy} - Bp{Tev} = Va{Xi}. (22)
From these, the efficacy of the EV detector can be repre-

sented by

1

£EV = m (23)

Therefore,

AREro gv = I(fw)Ve{X:} (24)

Let us now calculate the ARE as a function of m. Noting
that

_(9*\? T(m+p/2)
Eg{X}} = <;;) “Ton) (25)
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with 2m 4+ p > 0. it is easy to show that

.(12 () flx)dx

40 ,
= 4_”_"&1:7_"')“27,,,_1)2]51,{%}_ (26)

I{fw) =

o2

Now, when m > 1. we have

1 m
Epl=t = —5——. 27
H{XZ} o2 — 1) (27)
and heunce, the Fisher’s information becomes
m(dm — 3)
Ifw) = —5— 28
(fw) T — (28)

When 1/2 < m < 1, Eg{1/X?} is infinite. and so is I(fw).
It is also straightforward to get the variance of X; under H,

o2{mI%(m) - T2(m + 1/2)}.

= 2
VH{X} 7I'LF2(777,) ( 9)
Using (24), (28). and (29), we have
AN fanT2 T2y,
ARE10 gy = (4m — 3 mnlZ(m) — T2 (m + 1/2)} (30)

{(m — 12 ()

when mm > 1. From Figure 2, we can sec that AREro gv >
1 for all sn > 1, which means that the LO detector has
better asymptotic performance than the EV detector. Note
that AREro gy increases as m decreases. Note that the
AREo gy is obviously infinite when 1/2 < mn < 1, since
{10 1s infinite while £y is finite.
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Fig. 2. The AREr0 . rv

Because Tro has a term containing 1/X;, Tro may have
large negative values in some cases, and an overflow can oc-
cur. The overflow may cause malfunctions. Therefore, we
need to reduce the negative dynamic range by considering a
modified version of the LO detector. It is interesting to con-
sider a set of locally suboptimun (LS) detectors, whose test
statistics are made from the LO statistic by replacing 1/X;



with 1/XZ-’". 0 < k < 1. The test statistic of an LS detector
is thus A

n

1 1 1
TEMFEL?nHM~UZ{;&-}ﬁ,wU
i=1 1 :

= i
and the nonlinearity of the LS detector is

2m 1
)= —x— 2m—1)—, 2
golir) = S = (2m = 1) — (32)
which is shown in Figure 3. We can sce that the LS nonlin-
carity has a shape similar to the LO nounlinearity.
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Fig. 3. The LS nounlinearity with m, 62 = 1 (solid: & = 0.25, dashdot:
k = 0.5, dashed: k& = 0.75, dotted: k = 1)

Noting that

Va{Tis} = Er{Tis} — E5{T1s} (33)
and
) (
;1_13}) j’;EK{TLs} = Eg{TLsTro}, (34)
we have
_ {2mT(m) + kin*+1/2(2m — 1)D(m — £41)}2
£ = o5 . (3)
where
A = {4m?T(m) - 4mb-:'l'(2m - NI'(m + 1%)
+(2m — 1)2m*T(m - &)} (36)
and
B = {2m3T(m + 5) - (2m — 1)m*/2T (1 — .5k)}(37)

Note that the expression (35) for the efficacy of the LS detec-
tor is valid for all m > (k4 1)/2. Figure 4 shows ARE s pv
as a function of m. We can see that the AREps gy > 1.
Note that €15 is finite only for m > (k+1)/2.
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Fig. 4. The ARErs gy with 2 = 1 (solid: k = 0.25, dashdot: k = 0.5,
dotted: k = 0.75)

V. CONCLUDING REMARKS

In this paper, we applied the LO detection scheme to the
user detection problem. This can be regraded as a special
case of common randow signal detection problems. We pro-
posed an observation model, derived the LO and the LS de-
tectors, and analyzed their asymptotic performance charac-
teristic compared to those of the conventional EV detector.
We also showed that the LO and LS detectors all outper-
form the EV detector asymptotically. It is noteworthy that
the LS detector shows almost the same performance as the
LO detector except when the fading is extremely severe.
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