
International Symposium on Information Theory and its Applications, ISITA2006
Seoul, Korea, October 29–November 1, 2006

Use of Dynamic Programming for the Design of Irregular LDPC Codes

Sang Hyun LEE†, Duho RHEE‡, Il Mu BYUN‡, and Kwang Soon KIM‡

† Mobile Communications Lab.
Electronics and Telecommunications Research Institute

161 Gajeong-dong, Yuseong-gu, Daejeon, Korea
E-mail: sh-lee@etri.re.kr

‡Dept. of Electrical and Electronic Engineering
Yonsei University

134 Sinchon-dong, Seodaemun-gu, Seoul, Korea
E-mail: ks.kim@yonsei.ac.kr

Abstract

A simple design method using dynamic programming
is proposed for good LDPC codes with relatively low
code-rate. By applying a dynamic programming op-
timization to the construction of the portion fixed for
easy encoding in the parity-check matrix, we can max-
imize the girth associated with columns contained in
that portion of the matrix. Simulation results show
performance improvement over the conventional con-
trolled random construction method.

1. INTRODUCTION

Recently, LDPC codes have been employed in a va-
riety of practical applications including mobile com-
munication applications with link adaptation feature,
in which a suite of various channel codes is required
[1]. Although such codes have different code-rates and
codeword-lengths, it is practically preferred that, for
easy encoding, their corresponding parity-check matri-
ces contain a triangular sub-structure [2], which will
be referred to as an echelon form. The echelon form
is a lower triangular sub-matrix with its main diagonal
and the first diagonal below the main diagonal, which
will referred to as the first diagonal, filled with nonzero
entries. Also, it is commonly comprised of the low-
degree columns in the parity-check matrix because the
triangulated sub-structure is reserved for the parity-
check bits of codewords. In [3], a special echelon form
comprised of only degree-two columns was proposed to
keep the minimum distance and the girth as large as
possible. However, various techniques to evaluate the
optimal degree distribution including the density evo-
lution usually lead to more occurrence of columns with
degree of more than two in the parity-check columns
as the code rate decreases [4]. Thus, the echelon form
may contain columns with degrees of more than two
and could not be determined in the trivial form as in
[3]. Even in this case, however, by applying an eche-
lon form in the parity-check matrix, several diagonals

are fixed in advance and only a small portion of off-
diagonals needs to be configured. In addition, we can
easily evaluate the girth of the code because the lengths
of cycles contained in the Tanner graph associated with
the parity-check matrix can be straightforwardly de-
termined by evaluating the ‘distance’ between nontriv-
ial entries in the echelon form. Although such a sub-
structure with degrees of more than two could not ex-
ploit the simple encoding property in [3], it allows easy
encoding by back-substitution still with the computa-
tional complexity of O(n). In particular, for low-rate
codes, most part of the parity-check matrix is occupied
by the echelon form. Thus, the number of entries to be
configured by a controlled random construction, such
as the PEG algorithm [5], is reduced and the decoding
performance can be managed by the configuration of
the sub-structure. Since an implicit estimation of the
decoding performance is available with the distribution
of cycles, the locations of configurable entries can be
determined in order to maximize the length of associ-
ated cycles. Although such an optimization problem
is readily seen to be NP-hard, we relax the problem
so that each additional entry is placed in a sequential
manner. This paper addresses the design method of
a parity-check matrix with the echelon form using dy-
namic programming.

2. PROPOSED ALGORITHM

For an LDPC code of our interest, the parity-check
matrix of the code, H = [H1 Htr], is partitioned into
two sub-structures, where Htr is an echelon form de-
fined as above and denotes a sub-matrix containing all
parity-check columns, and H1 is a random sub-matrix
designed by a controlled random construction, such as
the PEG algorithm[5]. Furthermore, Htr does not need
to be a ‘square’ triangular matrix with the rightmost
column of degree one, but could be any ‘rectangular’
triangular matrix whose number of columns is less than
that of rows. For the sake of easy understanding, we

377



11

1

11

1

H1

1

X XX

X XX

X XX

X X

X

4 334 12 2

1

1

11

1

X

X

4

dcol(c)

3 2 1

5

4

3

2

1

col

row

Htr

1

6 5

7

6

Figure 1: The representation of the echelon form.

will explain the scheme with a simple example. How-
ever, the following assertions are valid for any parity-
check matrix whose right part is an echelon form. Fig.
1 shows the parity-check matrix with the echelon form
of seven rows and columns. Here, dcol(c) is a sequence
of the degrees of columns contained in the echelon form.
Then, a column c has u(dcol(c) − 2) remaining entries
which have not yet been placed, where u(x) = 0 if
x ≤ 0, and u(x) = x if x > 0. The ×’s in each column of
Htr represent available locations for the remaining en-
tries. Note that available locations are restricted to the
lower-triangular portion in order to maintain the easy
encoding feature. The indices of rows and columns,
row and col, denote the locations of the ×’s in Htr,
respectively. Since the column in the right portion of
the echelon form is more likely to cause a smaller cy-
cle, the configuration of new entries in Htr commences
at the rightmost column with at least one remaining
entry to be placed. Since the locations of new entries
are closely related to lengths of cycles containing those
entries, the examination of cycles is performed for all
available locations of each column with a proper metric
and the evaluated metrics will be compared to deter-
mine the best location. As the configuration goes on,
the addition of a new entry causes additional cycles
formed among the new entry and previously located
entries up to the current column. Here, the metric
can be separated into three parts caused by: i) cycles
formed between the new entry and the diagonal entries,
ii) cycles formed between new entry and the placed en-
tries up to the previous column, and iii) cycles formed
among new entries in the same column and the diago-
nal entries., and iv) the sum of metrics of the entries
which have been placed up to the previous column. By
comparing the metrics for all possible locations for the
current entry, the best location is determined. Such
a procedure is then repeated until locations of all en-
tries are determined. To evaluate the metric function,
the distribution of cycles should be examined. By a
brief glance, no new entry can avoid forming a cycle

containing it and the length of such a cycle is deter-
mined by the location of the new entry. Here, we add
one more constraint that additional entries in columns
with at least two additional entries should not have the
same row location. This constraint guarantees that cy-
cles formed among added entries are avoided. Then,
there exist three types of cycle caused by addition of
a new entry: the one formed by the new entry and
nonzero entries on two diagonals, another one among
the new entry and previously located entries, and the
other among more than two new entries in the same
column. For the mth new entry of the lth column, e

l
m,

the length of the first type cycle, L1(e
l
m), is determined

by

L1(e
l
m) = 2(∆r(e

l
m) + 1). (1)

Here, ∆r(e
l
m) is the absolute value of the difference

between the row location of e
l
m and the nonzero entry

in the same column on the first diagonal. Let L2(e
l
m, e)

denote the length of the second type cycle caused by
new entry e

l
m and a previously placed entry e. Then,

L2(e
l
m, e) is given by

L2(e
l
m, e) = 2(∆r(e

l
m, e) + ∆c(e

l
m, e) + 1), e ∈ Ep. (2)

Here, ∆r(e1, e2) and ∆c(e1, e2) are the absolute values
of the differences between the row locations and be-
tween the column locations of e1 and e2, respectively.
Furthermore, Ep denotes the set of all previous entries
that have been placed (the entries on the two diagonals
are excluded). Finally, let L3(e

l
m, el

m′) be the length of
the third type cycle caused by the new entry e

l
m and an

entry e
l
m′ added (simultaneously) in the same column.

Then, L3(e
l
m, el

m′) is calculated by

L3(e
l
m, el

m′) = 2(∆r(e
l
m, el

m′) + 1), el
m′ ∈ Ec \ {e

l
m}, (3)

where Ec is the set of all entries simultaneously placed
in the current column. Then, the metric function for
the distribution of cycles caused by the addition of e

l
m

is defined by

M(el
m) = B− 1

2
L1(e

l
m) +

∑

e∈Ep

B− 1

2
L2(e

l
m,e) +

∑

e∈Ec\{el
m}

(B− 1

2
L3(e

l
m,e) + B− 1

2
ΛEp (el

m,e)).(4)

Here, a function ΛEp
(e1, e2), {e1, e2} ∈ Ec is defined

by

ΛEp
(e1, e2)

=











4 ∃
e ∈ Ep such that(e)r ∈ {(e1)r, (e2)r},

(e)c = max((e1)r, (e2)r) − l, l = 0, 1

∞ otherwise,

(5)

378



2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

3 4 5 6col

Figure 2: The trellis for the dynamic programming.

where (e)c and (e)r denote the column and the row
locations of e, respectively. ΛEp

(e1, e2) is introduced
to deal with a special case that a column with only
one additional entry forms a cycle between the current
column which has at least two additional entries. The
exponential representation of the metric function in (4)
is justified by the observation that a small number of
short cycles are even more likely to impair the decoding
performance than a large number of large cycles. Note
that a single cycle of length 2L has the same impact
as B cycles of length 2(L + 1) in this metric. Thus,
B should be carefully chosen to quantify the relation
between adjacent length of cycles.

Now, consider the construction of a trellis for dy-
namic programming. Fig. 2 depicts the trellis for
the echelon form of the parity-check matrix in Fig. 1.
Here, the start and end nodes indicate the origination
and the termination of the trellis, respectively. Several
columns of nodes between two trivial nodes enumerate
all possible configurations of the additional entries for
the corresponding column in the echelon form. The
digit labelled below each column in the trellis indicates
the column location in the parity-check matrix, as de-
fined in Fig. 1. The digits labelled on each node rep-
resent the row locations of new entries. The number
of nodes on each column depends on both the num-
ber of locations available for the new entries and the
number of remaining entries to be placed. For the lth
column with Nl available locations and Ml remaining
entries to be placed,

(

Nl

Ml

)

configurations are possible.

For practical applications such as in [1], Ml is usually
set to a small number. Thus, each column with

(

Nl

Ml

)

nodes in the trellis may be treated with manageable
complexity. Edges emanating from a node of one col-

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

2

1

2

1

3

1,3

1,2

1,4

2,4

2,3

3,4

1,3

1,2

1,4

2,3

1,5

2,4

3,4

2,5

3,5

4,5

endstart

(a) (b) (c)

(d) (e) (f)

3 4 5 6 3 4 5 6 3 4 5 6

3 4 5 63 4 5 63 4 5 6

Figure 3: An example of dynamic programming proce-
dure.

umn and arriving at each node of the adjacent column
denote all possible configurations for entries of the next
column after the addition at the current column. Al-
though the connectivity of edges is controlled to cover
all possible configurations of the entry addition, some
edges will be obviated by a pruning procedure to meet
the constraint noted above. To do so, we impose on
the connection of edges a constraint that, for a col-
umn with at least two entries to be added, the set
of entries in the current column has no common en-
try with the previous columns with at least two added
entries. The constraint assures that all cycles formed
by only added entries are avoided. The procedure of
the entry addition employs the conventional dynamic
programming [6], except for the pruning procedure of
some nodes. The pruning procedure is followed by the
selection of the edge with the best metric up to cur-
rent column among arriving edges at the node. For
a given node labelled with at least two digits in the
current column, all nodes in the previous column are
connected to it by the corresponding edges. Also, such
nodes in the previous column have the corresponding
survived paths that contain the information of nodes
selected up to that column. If any node labelled with
at least two digits in the survived path has an identical
row location with the entry at the node in the current
column, the corresponding edge is discarded before the
selection of the best metric. This operation avoids all
cycles formed among added entries. After the pruning
procedure, the edge with the best metric up to current
column is selected among arriving edges at each node
while the remaining edges are discarded. Fig. 3 shows
an example of the addition procedure with the trellis
associated with the echelon form in Fig. 1. In (a), the

379



procedure is initialized by evaluating the metrics for
all first type cycles formed by the first new entry and
diagonal entries. In (b)-(d), each node in the column
chooses the path associated with the best metric value.
At the last step ((e)), the path associated with the best
metric is chosen among all possible paths to complete
the addition of new entries. Finally, the resultant entry
configuration can be represented by the indices of the
rows and columns as

{(r, c)} = {(1, 3) , (2, 4) , (1, 5) , (3, 5) , (2, 6) , (4, 6)}. (6)

The remaining part of the parity-check matrix, H1, can
then be constructed from the initial graph associated
with Htr in a controlled random manner, which re-
quires additional cycle conditioning scheme. However,
since most part of the parity-check matrix has been
already designed, the design of H1 becomes simple.

3. DESIGN EXAMPLE

We used the proposed structure to design simple
LDPC codes with code rate 1/3 and 1/4. The column
degree profile is given as {2, 4, 20} and the distribution
of the degrees is chosen for each code rate by using
the density evolution technique [4] with the constraint
that the number of degree-two columns in the parity-
check matrix is less than half the number of entire rows.
We set B in (4) to 10. In Fig. 4, the performance
of the constructed codes is shown over AWGN chan-
nel. The number of iteration for the message-passing
decoding is 100. Here, the conventional code denotes
the LDPC code containing an echelon form and using
the same degree distribution but constructed by the
PEG algorithm with girth conditioning. From Fig. 4,
the performance of the proposed code is better than
the conventional code. This is mainly due to the fact
that the lengths of overall cycles formed with the low
degree columns are considered in the proposed algo-
rithm while the conventional algorithm only guarantee
the minimum length of cycle. The simulation result
shows that, at given code rate and degree distribution,
the performance improvement can be achieved by al-
lowing a particular structure. As the degrees of the
columns increase, the complexity of the proposed algo-
rithm grows very fast. However, for a code with rel-
atively short codeword-length, the proposed algorithm
runs a little bit faster than the PEG algorithm because
of no need to the actual evaluation of cycles.

4. CONCLUSIONS

In this paper, an LDPC code structure using an
echelon form and its design method using dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

 

 
Conv. (1/4,2048)
DP. (1/4,2048)
Conv. (1/3,1584)
DP. (1/3,1584)
Conv. (1/4,1024)
DP. (1/4,1024)
Conv. (1/3,528)
DP. (1/3,528)

Figure 4: The performance of designed codes over
AWGN channel

programming were proposed for the design of low-rate
LDPC codes. Compared to the conventional controlled
random construction, the proposed method eliminates
small cycles associated with low-degree columns more
effectively since the proposed code structure greatly
simplifies the evaluation of the girth. In addition, the
proposed structure can adopt an optimized degree dis-
tribution while maintaining the linear encoding com-
plexity. Simulation results showed that the proposed
code achieves performance improvement over the con-
ventional codes.

References

[1] B. Classon et al., “LDPC coding for OFDMA
PHY,” IEEE C802.16e-05/066r3, January 2005.

[2] T. J. Richardson and R. L. Urbanke, “Efficient
encoding of low-density parity-check codes,”
IEEE Trans. Inform. Theory, vol. 47, pp. 638-
656, February 2001.

[3] M. Yang, W.E. Ryan, and Y. Li, “Design of ef-
ficiently encodable moderate-length high-rate ir-
regular LDPC codes,” IEEE Trans. Commun.,
vol. 52, pp. 564-571, April 2004.

[4] http://lthcwww.epfl.ch/research/ldpcopt/

[5] X. Hu, E. Eleftheriou, and D. Arnold, “Progres-
sive edge-growth Tanner graphs,” Proc. IEEE
GlobeCom, vol. 2, pp. 995-1001, San Antonio,
TX. U.S.A., November 2001.

[6] E. Horowitz and S. Sahni, Fundamentals of Com-
puter Algorithms, Computer Science Press, 1978.

380


