
Design of an LDPC Code w
∗Sang Hyun Lee, †Kwang Soon Kim, ∗Jae Kyun Kwon

∗ Telecomm. Research Lab.,
Electronics and Telecommunications
Research Institute, Daejeon, Korea

E-mail: {sh-lee, jack, jyahn}@etri.re.kr

† Department of
and Electronic En

Yonsei University, S
E-mail: ks.kim@y

Abstract— A search algorithm for stopping sets in a Tanner
graph is proposed for designing good low-density parity-check
(LDPC) codes. By applying the belief-propagation algorithm with
messages containing the information of originated variable nodes
and their connected edges, the stopping sets can be detected.
Furthermore, a code design method using the algorithm is
presented and the performances of the designed code over several
channels are shown.

I. INTRODUCTION

An LDPC code has attracted much consideration due to its
performance very close to the Shannon capacity limit under the
assumption of asymptotically long codeword length. However,
it has been reported that a moderate-length code suffers from
an error floor in a high SNR region [1]. Also, it has been shown
that, under message-passing decoding, small stopping sets in
the graph dominantly give rise to high error floors [2]. Al-
though a conditioning method for implicit alleviation of error
floors has been proposed to make degrees of nodes associated
with small cycles high [3], the method does not guarantee
actual detection of small stopping sets. This paper addresses
an algorithm that detects stopping sets up to pre-defined size.
The proposed scheme performs a belief-propagation algorithm
with messages carrying the information of originated variable
nodes and their connected edges. Furthermore, a code design
method using the algorithm is presented and the performances
of the designed code over several channels are shown.

II. DEFINITION OF MESSAGE AND UPDATE PROCESSING

The basic idea of the proposed algorithm is to run a
belief-propagation algorithm on a Tanner graph with particular
messages. A message in the proposed algorithm contains
information on the variable nodes which the message has
passed so far and the edges where the message leaves those
nodes. To deal with the messages, two different kinds of
node update equations are defined: i) for constraint nodes, an
input message entering through one of the connected edge
is distributed as the output messages to the other edges and
ii) for variable nodes, additional information of the current
variable node and the constraint node which the message
propagates to is added to the aggregate of the input messages.
Then, we can examine the existence of a stopping set in
the following way: i) send a particular message to all edges
connected to the variable node under examination, which is
referred to as the starting variable node in the sequel, ii) update

the me
in the
the con
the var
all con
contain
conditio
reconst
set out
Here, w

The
the sec
not. Th
through
detectio
with th
cycle d
for each

µ

where
entering
jth edg
denote
E(ni) d
the star
edges a
nodes a
pass an

The
variable
from th
used fo
set dete
edge w
nontriv
a comp
set of o
constra
edge co
update
output
ith Low Error Floor
, ‡Yun Hee Kim, and ∗Jae Young Ahn

Electrical
gineering,
eoul, Korea
onsei.ac.kr

‡ School of Electronics
and Information,

Kyung Hee University, Korea
E-mail: yheekim@khu.ac.kr

ssages with the node update equations at each node
graph, iii) construct a set of input messages entering
straint nodes accepting more than two messages or

iable nodes accepting simultaneous messages through
nected edges, iv) check whether a subset of nodes
ed in the constructed message set satisfies a particular
n assuring the presence of a stopping set, and v)

ruct a new subset of valid nodes forming a stopping
of nodes contained in the constructed message sets.
e define two different types of messages as follows.

first type message is a binary digit indicating whether
ond type message carries a nontrivial message or
e message ‘1’ indicates that the second type message

the edge carries useful information for stopping set
n. Note that we can examine cycles in a Tanner graph
e first type messages [4] and it will be denoted as a
etection (CD) message. The CD message is updated

edge connected to variable or constraint node by

O
(ni,ej)

=

 ⊕

e′
j∈E(ni)

µI
(ni,e′

j)

⊗

µI
(ni,ej)

, (1)

µI
(ni,ej)

is the input message of the jth edge, ej ,
the node ni, µO

(ni,ej)
is the output message of the

e, ej , leaving the node ni, and the operations ⊕ and ⊗
the logical OR and XOR operations, respectively. Also,
enotes the set of edges connected to the node ni. For

ting variable node, output messages of all connected
re ‘1’. Then, the output messages of the neighboring
re calculated by (1). Note that the message ‘1’ cannot
edge more than once [4].

second type message carries the information of the
and the constraint nodes which form the shortest paths

e starting node. Since this type of message is directly
r stopping set detection, it will be denoted as stopping
ction (SD) message. Note that the SD message of an
ith a null CD message is an empty set and that a

ial SD message can exist only once for each edge. For
lete definition, a single SD message is defined as the
rdered three-tuples containing a variable node and a

int node, which uniquely define the information of the
nnecting them, and a flag set. At any class of node, the
of an SD message is performed as follows: the initial
SD message of the starting variable node, v∗, to its

neighboring constraint node c, ξ(v∗, c), is defined as

ξ(v∗, c) = {(v∗, c, ∅)}, (2)

where the third entry is reserved for a flag set, which will
be discussed later. Now, we define some notations used
throughout this paper as follows:

• (n1, n2): the edge connecting the two nodes n1 and n2.
• VI(c) and EI(c) (VO(c) and EO(c)): the sets of the

variable nodes and the corresponding edges with nonzero
output (input) CD messages to (from) the constraint node
c, respectively.

• CI(v) and EI(v) (CO(v) and EO(v)): the sets of the con-
straint nodes and the corresponding edges with nonzero
output (input) CD messages to (from) the variable node
v, respectively.

• (ξ)k,i: the ith entry of the kth three-tuples in ξ.
• |A|: the cardinality of a set A.
• hitting node: a variable node accepts nonempty SD mes-

sages through its all connecting edges or a constraint
node accepts nonempty SD messages through at least two
connecting edges.

• Ci (Vi): the set of all hitting constraint (variable) nodes
at the ith iteration.

• V (ξ), C(ξ), E(ξ), and F (ξ): the set of the first entries
(variable nodes), the second entries (constraint nodes), the
set of edges connecting the first and the second entries,
and the collection of the nonempty third entries of all
elements in a message ξ, respectively.

• V (Ω), C(Ω), E(Ω), and F (Ω): the unions of V (ξ), C(ξ),
E(ξ), and F (ξ) for all ξ ∈ Ω, respectively.

• En(Ω): the set of all edges that are both included in E(Ω)
and connected to a node n ∈ V (Ω) ∪ C(Ω).

• V (A) and C(A): the sets of all variable and constraint
nodes in a set A composed of nodes.

Note that VI(c) and VO(c) (CI(v) and CO(v)) are mutually
exclusive due to (1). Then, the update processing of an SD
message is given as follows:

1) At constraint nodes: The output message leaving a
constraint node c is given by

ξ(c, v) =

{⋃
v′∈VI(c)ξ̌(v

′, c), if v ∈ VO(c)
∅, otherwise

(3)

where ξ̌(v, c) = ξ(v, c) except that, for k = 1, · · · , |ξ(v, c)|,
(
ξ̌(v, c)

)
k,3

=

{
(ξ(v, c))k,3 if |VI(c)| = 1
(ξ(v, c))k,3 ∪ {v} if |VI(c)| ≥ 2.

(4)

Thus, for messages arriving at a constraint node with at least
two nonzero CD messages, the third entry of each constituent
element is updated by adding the index of the variable node
where the message comes from.

2) At variable nodes: The output message through an edge
(v, c) with a nonzero CD message is defined as the union of
the two sets: the set of input messages entering the variable
node v in the same way as in a constraint node and the set of

one thr
through

ξ(v, c)

Thus, o
traverse

Now,
we assu
matrix.
are add
sets ca
output
neighbo
Also, th
During
messag
input C
the edg
a path
corresp
the var
refer to
single
iteration
in each
ith itera
(variabl
all hitti
messag
node up

where
Since (6
we will
causes
messag

Note th
three-tu
constra
nonzero
flag set
node th
into ξ̄i(
ee-tuple, (v, c, ∅). Then, the output message leaving v
the connected edge (v, c) is updated by

=

{(⋃
c′∈CI(v)ξ(c

′, v)
)
∪ {(v, c, ∅)} if c ∈ CO(v)

∅ otherwise.
(5)

ne can see that the size of an SD message grows as it
s in the graph.

III. STOPPING SET DETECTION

consider the stopping set detection method. Here,
me a node-by-node construction of the parity-check
Once new edges, as many as the variable node degree,
ed to the graph being constructed, a search for stopping
used by the new edges is performed. Initially, each
CD message from the starting variable node v∗ to the
ring constraint node c, c ∈ CO(v∗), are set to ‘1’.
e corresponding output SD messages are set as in (2).
the belief-propagation processing, each node accepts

es through the edges connected to itself. A nonzero
D message to a node means that the current node and
e which the message passed through are included in
that may be contained in a stopping set. Also, the
onding input SD message carries the information of
iable and constraint nodes contained in the path. We

a single constraint node update processing and a
variable node update processing together as a single
. The stopping set detection can be performed twice
iteration at the end of each update processing. At the
tion, the aggregate message at each hitting constraint
e) node c ∈ Ci (v ∈ Vi), ξ̄C

i (c) (ξ̄V
i (v)), and the set of

ng nodes, ΦC
i (ΦV

i), are obtained as the union of the
es of the hitting node after the constraint (or variable)
date processing as follows:

ξ̄C
i (c) =

⋃
(v,c)∈EI(c)

ξ(v, c), (6)

ξ̄V
i (v) =

⋃
(c,v)∈EI(v)

ξ(c, v), (7)

ΦC
i = Ci ∪ Vi−1, (8)

ΦV
i = Ci ∪ Vi, (9)

Ci and Vi denote
⋃

j≤i Cj and
⋃

j≤i Vj , respectively.
) and (7) ((8) and (9)) are actually identical operations,
omit the superscripts C and V in the sequel unless it

any confusion. Finally, the collection of the aggregate
es at the ith iteration, Ωi, is obtained as

Ωi = {ξ̄i(n)|n ∈ Φi}. (10)

at Ω0 is an empty set. Recall in (4) that, for all the
ples contained in the input SD messages of a hitting
int node c, the adjacent variable node which sent a

SD message is collected into their last entries as a
. The new element of this flag indicates the variable
at makes the corresponding three-tuple be collected
c) by sending the nonzero SD message to c. If an SD

message passes more than one hitting constraint node, the third
entry of its constituent three-tuples has as many elements as
the number of hitting constraint nodes it has passed. This flag
will facilitate the determination of the nodes to be removed
for the stopping set search.

Let Ni be V (Ωi) ∪ C(Ωi) ∪ Φi and Mi be the subset
of Ni comprised of the variable nodes in V (Ωi) ∪ V (Φi)
and the constraint nodes in C(Ωi) ∪ C(Φi), satisfying the
following conditions: i) all neighboring constraint nodes of
each variable node in Mi are contained in Mi and ii) at
least two neighboring variable nodes of each constraint node
in Mi are contained in Mi. Then, one can see from the
definition of a stopping set that Mi forms a stopping set. Thus,
we can find a stopping set if there exists such a nonempty
Mi in a Tanner graph. To find Mi out of nodes in Ni,
the following scheme proceeds. Firstly, V (Ωi) and E(Ωi) are
constructed from Ωi. Then, for each variable node v in V (Ωi),
|Ev(Ωi)| is compared with |EO(v)|. If the two values are the
same, it indicates that all edges of v are contained in E(Ωi).
Thus, v can be included in a stopping set. We will refer to
this condition as the cardinality condition. If the cardinality
condition is satisfied for every node in V (Ωi), Ni forms a
stopping set. However, there may be some variable nodes in
Ni not satisfying the cardinality condition. For n ∈ Φi, let
ξ̄f
i (n) ⊂ ξ̄i(n) be the collection of all the three-tuples in ξ̄i(n),

whose first entries fail to satisfy the cardinality condition.
Also, let Ωf

i = ∪n∈Φi ξ̄
f
i (n) be the collection of all ξ̄f

i (n),
n ∈ Φi. Then, each variable node in V (Ωf

i) has at least one
‘open’ edge in the subgraph constructed by Ni. Note that a
node connected to such an ‘open’ edge cannot be included
in a stopping set. Thus, if V (Ωf

i) is nonempty, we should
remove some nodes from V(Ωi) to examine the existence of a
stopping subset Mi of Ni according to the following removal
procedure.

Procedure 1 The removal procedure is as follows:

i) For each n ∈ Φi, ξ̄i(n) is erased in Ωi and n is erased
in Φi if there exists any constituent three-tuple of ξ̄i(n)
whose first entry is included in V (Ωf

i) and third entry
is an empty set.

ii) For each n ∈ Φi, each remaining three-tuple in ξ̄i(n) is
erased if its first entry is included in V (Ωf

i) or its third
entry is included in F (Ωf

i).
iii) Let Ω′

i and Φ′
i denote the reduced sets of Ωi and Φi

according to the steps 1 and 2, respectively. Then, for
each c ∈ C(Φ′

i), ξ̄i(c) is erased in Ω′
i and c is erased

in Φ′
i if |Ec(Ω′)| < 2. Also, for each v ∈ V (Φ′

i), ξ̄i(v)
is erased in Ω′

i and v is erased in Φ′
i if |Ev(Ω′)| <

|EO(v)|.
Let Ω′′

i and Φ′′
i denote the resulting reduced sets according to

Procedure 1. If the cardinality condition is satisfied for every
node in V (Ω′′

i), Mi = V (Ω′′
i)∪C(Ω′′

i)∪Φ′′
i forms a stopping

set. Whether a stopping set is found or not from Ω′′
i , we can

repeat Procedure 1 to further check the existence of smaller
stopping sets. However, it is not necessary since the smaller

stoppin
they ex
in each

IV

Fig.
rithm. H
constra
note the
CD me
the var
the gra
messag
the corr
nodes ν

ξ(v1, c

ξ(v1, c

respecti
the inp
transpa
of varia

Since Ω
variable
v15 acc
edges. T
form th
in ΩV

1 .
(the sec
v1 fails
procedu
is foun
node in
to (1) a

At the
constra
are incl
in ΩC

2

contain
node c
the vari
previou
can be

ξ̄C
2 (c5

The ca
some c
{v2, v3,

(ΩC
2)f
g sets should be already found in earlier iterations if
ist. Thus, the removal procedure is performed only once
iteration.

. AN EXAMPLE OF STOPPING SET DETECTION

1 illustrates a simple example of the proposed algo-
ere, for notational simplicity, all variable nodes and

int nodes are enumerated in Fig. 1. Let νC
i and νV

i de-
set of constraint and variable nodes accepting nonzero

ssages at the ith iteration, respectively. Suppose that
iable node v1 and its four edges are newly added to
ph under construction (νV

0 = {v1}). Initially, the CD
es through all connected edges of node v1 are ‘1’ and
esponding SD messages to the neighboring constraint
C
1 = {c1, c2, c3, c12} are defined as

1) = {(v1, c1, ∅)}, ξ(v1, c2) = {(v1, c2, ∅)}
3) = {(v1, c3, ∅)}, ξ(v1, c12) = {(v1, c12, ∅)}, (11)

vely. At the constraint node update of the first iteration,
ut SD messages entering each constraint node are
rently distributed according to (1). Note that the set
ble nodes for nonempty output SD messages is

νV
1 = {v2, v3, v4, v5, v6, v14, v15}. (12)

C
1 is empty, the belief propagation proceeds. At the
node update of the first iteration, the variable node

epts nonempty SD messages through its all connected
hus, v15 is collected in V1, the messages entering v15

e aggregate message, ξ̄1(v15), and ξ̄1(v15) is collected
Then, we can see that V (ΩV

1) = {v1}. Since two edges
ond and the third edges of v1) are missing in Ev1(Ω

V
1),

to satisfy the cardinality condition. After the removal
re, we see that (ΩV

1)′ is empty. Thus, no stopping set
d and the belief propagation continues. Each variable
νV
1 makes its output CD and SD messages according

nd (3), respectively. Then, νC
2 is given as

νC
2 = {c4, c5, c6, c7, c8, c9, c10, c11}. (13)

constraint node update of the second iteration, the
int nodes c5,c8 and c9 are hitting nodes. Thus they
uded in C2 and their aggregate messages are included
together with ξ̄1(v15) in ΩV

1 . For every three-tuple
ed in the aggregate messages collected at the constraint
5, c8, and c9, the flag set is updated by including
able node which sent a nonempty SD message at the
s iteration. For instance, the aggregate message of c5

expressed as

) = {(v1, c1, {v2}), (v2, c2, {v2}), (v1, c1, {v3}),
(v3, c1, {v3}), (v1, c2, {v3})}. (14)

rdinality condition check on V (ΩC
2) shows that

onnected edges of variable nodes in V ((ΩC
2)f) =

v4, v6} are missing. Also, we obtain

= {{(v2, c5, {v2}), (v3, c5, {v3})}, {(v4, c8, {v4})},
{(v6, c9, {v6})}} (15)

and F ((ΩC
2)f) = {{v2}, {v3}, {v4}, {v6}}. Here, we see that

no element in V ((ΩC
2)f) is contained in a three-tuple with

an empty flag set. Thus, (ΩC
2)′ is obtained from ΩC

2 by
removing all three-tuples whose first element is in V ((ΩC

2)f)
or third element is in F ((ΩC

2)f) according the second step
of Procedure 1. Now, we see that (ΦC

2)′ = {v15, c5, c8, c9}
and that |Ec5((Ω

C
2)′)| = 0 < 2, |Ec8((Ω

C
2)′)| = 1 < 2 and

|Ec9((Ω
C
2)′)| = 1 < 2. Thus, from the third step of Procedure

1, (ΦC
2)′′ are obtained by erasing c5, c8 and c9 in (ΦC

2)′

and (ΩC
2)′′ is obtained by erasing the corresponding aggregate

messages in (ΩC
2)′ as

(ΩC
2)′′ = {{(v1, c1, ∅), (v1, c12, ∅)}} (16)

One can see that the cardinality condition check on (ΩC
2)′′

is failed since |Ev1((Ω
C
2)′′)| = 2 < EO(v1) = 4. At the

variable node update of the second iteration, the aggregate
messages at variable nodes v7, v8, v9 and v10 are newly added
to update ΩV

2 . Since only v6 fails to satisfy the cardinality
condition, the removal procedure is performed as follows:
according to the step i), v10 and the corresponding aggregate
message are removed from ΦV

2 and ΩV
2 , respectively. Then,

according to the step ii), the three tuples (v1, c3, {v6}) and
(v6, c9, {v6}) are erased. In the step iii), it is easily seen that
no node in (ΦV

2)′ should be erased. Thus, (ΩV
2)′ and (ΩV

2)′′

are the same. Finally, one can easily see that V ((ΩV
2)′′) =

{v1, v2, v3, v4, v5} and all the variable nodes in V ((ΩV
2)′′)

satisfy the cardinality condition. Therefore, the variable node
set of a stopping set S is determined as

V (S) = {v1, v2, v3, v4, v5, v7, v8, v9, v15} (17)

Note th
the dete
able no
{v1, v2,
is a set
variable
set. The
by choo
detected

V. TH

Let r
defined
stoppin
code de
stoppin
larger r
is benefi
only by
error pe
of conn
degrade
a small
the stop

In Fi
propose
Nc(m)
mth co
at the proposed algorithm does not guarantee that
cted set is the minimal stopping set. Here, the vari-
de set of the minimal stopping set is V (Smin) =
v3, v4, v5, v7, v9, v15}. However, since the stopping set
of nodes, the same set is detected when the starting
node is set to different variable node in the stopping
n, the minimal stopping set can be very often found
sing the smallest set out of the similar stopping sets
with different starting variable nodes.

E OUTLINES OF LDPC CODE DESIGN ALGORITHM

AND CODE DESIGN EXAMPLE

S denotes the radius of the stopping set S which is
as the number of the node update processing until the

g set is detected. This quantity is used for an LDPC
sign as well as the number of variable nodes in the

g set S. Since it is likely that a stopping set with
adius has more nodes contained in it, the large radius
cial for the good code design. Also, the code designed
the stopping set detection often shows the degraded bit
rformance in low SNR region because a large number
ected small cycles constituting a large stopping set
s a message-passing decoding performance. Therefore,
cycle conditioning is essentially applied together with
ping set detection.

g. 2, the outlines of the code design algorithm using the
d detection method are summarized. Here, Nv(n) and
are the node degrees for the nth variable node and the
nstraint node, respectively. For a new variable node, a
5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

V0

C1

V0

C1

V1

C2

V0

C1

V1

C2

V2

1

CΩ =∅

1st constraint node processing

2nd constraint node processing

2nd variable node processing

() ()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }() { }() { }()

()

() () { }() { }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 1 5 3 1 2 3

2

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5 1 3 6 6 9 6

1 2 e 1 1 1 1 2 1 1 3

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , , , , , , , ,

E N ({ , , , , , , , , ,

E

C

C
v

C
V

v c v c
v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v v c v v c v

v c v c c v c v

 ∅ ∅

 Ω =

Ω = ∅

Ω =

{ }()
{ }() { }() { }() () ()

() { }(){ }() ()

() { }(){ }() ()

() { }(){ }() ()

() { }() { }(){ }() ()

() { }(){ }() ()

1 2 3

1 2 4 1 3 5 1 3 6 1 12 1

2 2 e 2 5 2 2

3 2 e 3 5 3 3

4 2 e 4 8 4 4

5 2 e 5 8 5 5 9 5 5

6 2 e 6 9 6 6

, , ,

, , , , , , , , , , , }) 4

E N , , 1 2

E N , , 1 2

E N , , 1 2

E N , , , , , 2

E N , , 1 3

O

C
v O

C
v O

C
v O

C
v O

C
v O

v c v

v c v v c v v c v v c E v

v c v E v

v c v E v

v c v E v

v c v v c v E v

v c v E v

 ∅ = =

 Ω = = ≠ =

 Ω = = ≠ =

Ω = = ≠ =

Ω = = =

Ω = = ≠ =

()

() ()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }() { }() { }()

() () { }() { }() { }()
{ }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5 1 3 6 6 9 6

1 1 2 1 1 1 2 2 5 2 1 1 3

7

3 5 3 1

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , , , , , , , ,

, , , , , , , , , , , , , , ,
V

, , , ,
V

v c v c
v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v v c v v c v

v c v c v c v v c v v c v

v c v v

∅ ∅

∅ ∅

Ω =
{ }()

{ }() { }() { }() { }() { }()
() () ()
() () () () { }()

{ }() { }() { }()
{ }() { }() { }() { }()

2 3

1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8

1 1 3 6 1 2

1 1 3 6 1 2 4 7 1 3 5

9

5 9 5 1 3 6 6 9 6

1 2 4 4 8 4 1 3 5 5 8 5 1 3

10

,

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , ,
V

c v

v c v v c v v c v v c v v c v

v c v c v c

v c v c v c v c v c v

v c v v c v v c v

v c v v c v v c v v c v v c

∅ ∅ ∅
 ∅ ∅ ∅ ∅

()
()6 10

, ,

, ,v c

 ∅

∅

()

() ()

{ }() { }()
{ }() { }()

()
()
()

() () (){ }

() () ()

15 1 1 1 12

5

2
8 1 3 5 5 8 5

9 1 3 5 5 9 5

5 2

8 2

9 2

2 15 1 1 1 12

1 2 e 1 1 1 12

2

V , , , , ,

C

C , , , , ,

C , , , , ,

| () | 0 2

| () | 1 2

| () | 1 2

V , , , , ,

| E () | N , , , , ,
| E () |

C

C
c

C
c

C
c

C

C
vC

V

v c v c

v c v v c v

v c v v c v

E

E

E

v c v c

v c v c

 ∅ ∅
 ∅ ′Ω =

 ′Ω = <
 ′Ω = <

′ Ω = <

′′Ω = ∅ ∅

′′Ω = ∅′′Ω =
(){ }()

()12 4OE v

 ∅

 = ≠ =

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

V0

C1

V1

() ()

() () () (){ }()
()

()

1 15 1 1 1 12

1 1 e 1 1 1 12

1

1

1

{V , , , , , }

E N , , , , ,
E

2 4

V

V
vV

V

O

V

v c v c

v c v c

E v

Ω = ∅ ∅

 Ω = ∅ ∅Ω =
= ≠ =

′Ω =∅

1st variable node processing

()

()
() { }() { }() ()

{ }() { }() () { }()
{ }() ()

()

() () { }(){ }() ()

() { }() (){ }() ()

()

2

1 1 1 1 2 1 1 3 1 2

1 2 e 1 2 3 1 2 4 1 3 1 3 5

1 3 6 1 4

1

2 2 e 2 4 2 5 2 2

3 2 e 3 5 3 3 6 3

4 2 e 4

E

, , , , , , , , , , , ,

E N (, , , , , , , , , , , ,)

, , , , ,

4

E N , , , , , 2

E N , , , , , 2

E N ,

V
V

V
v

O

V
v O

V
v O

V
v

v c v c v v c v v c

v c v v c v v c v c v

v c v v c

E v

v c v c v E v

v c v v c E v

v c

Ω =

 ∅ ∅
 Ω = ∅

∅
= =

Ω = ∅ = =

Ω = ∅ = =

Ω = () { }(){ }() ()

() { }() { }(){ }() ()

() { }() (){ }() ()

7 4 8 4 4

5 2 e 5 8 5 5 9 5 5

6 2 e 6 9 6 6 10 6

, , , , 2

E N , , , , , 2

E N , , , , , 2 3

O

V
v O

V
v O

v c v E v

v c v v c v E v

v c v v c E v

∅ = =

Ω = = =

 Ω = ∅ = ≠ =

()
() ()

()

()
() { }() { }() ()

{ }() { }() { }() { }()
()
()

() () { }(){ }()

9 2

9 2 9

2

1 1 1 1 2 1 1 3 1 2

1 2 e 1 2 3 1 2 4 1 3 5 1 3 6

1 12

1

2 2 e 2 4 2 5 2

| () | 2 2

| () | 3

| E () |

, , , , , , , , , , , ,

| E () | N (, , , , , , , , , , , ,)

, ,

4

| E () | N , , , , ,

V
c

V
v I

V
V

V
v

O

V
v O

E

E E v

v c v c v v c v v c

v c v v c v v c v v c v

v c

E v

v c v c v E

 ′Ω = ≥

′ Ω = =
′′Ω =

 ∅ ∅
 ′′Ω =

∅
= =

′′Ω = ∅ = ()

() { }() (){ }() ()

() () { }(){ }() ()

() { }() { }(){ }() ()

2

3 2 e 3 5 3 3 2 3

4 2 e 4 7 4 8 4 4

5 2 e 5 8 5 5 9 5 5

2

| E () | N , , , , , 2

| E () | N , , , , , 2

| E () | N , , , , , 2

V
v O

V
v O

V
v O

v

v c v v c E v

v c v c v E v

v c v v c v E v

 =

 ′′Ω = ∅ = =

′′ Ω = ∅ = =

 ′′Ω = = =

: Cardinality condition is satisfied for all nodes

: All constraint nodes lack

their connected edges

: No constituent node lacks

its connected edges

5 6 7 8 9 10 11

109 1211

14

13

15

8

12

1

1 2 3

4

32 5 64

7

Recovered stopping set

()

()

() ()
{ }() { }() { }() { }() { }()
{ }() { }() { }() { }()
{ }() { }()

() () { }() { }() { }()
{ }() { }()

15 1 1 1 12

5 1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8 1 2 4 4 8 4 1 3 5 5 8 5

9 1 3 5 5 9 5

1 1 2 4 1 1 2 2 5 2 1 1 32

7

3 5 3 1 2 3

2

V , , , , ,

C , , , , , , , , , , , , , ,

C , , , , , , , , , , ,

C , , , , ,

, , , , , , , , , , , , , , ,
V

, , , , ,

V

V

v c v c
v c v v c v v c v v c v v c v

v c v v c v v c v v c v

v c v v c v

v c v c v c v v c v v c v

v c v v c v

∅ ∅

′′ ∅ ∅Ω
=

 ′= Ω
 { }() { }() { }() { }() { }()

() () ()
() () () () { }()

{ }()

1 1 2 2 5 2 1 1 3 3 5 3 1 2 3

8

1 1 3 6 1 2

1 1 3 6 1 2 4 7 1 3 5

9

5 9 5

, , , , , , , , , , , , , , ,
V

, , , , , , , ,

, , , , , , , , , , , , , , ,
V

, ,

v c v v c v v c v v c v v c v

v c v c v c

v c v c v c v c v c v

v c v

 ∅ ∅ ∅
 ∅ ∅ ∅ ∅

(i) (ii)

(iii)

(iv)

(v)

Fig. 1. An example of stopping set detection method.

() ()
{ }

()

Input : , , , , , 0, , 1, , 0, , 1

 1: set 0, 0, 0, , 1

 2: do

 3: 0

 4: while ()

 5: choose randomly elements among the elements with nonzero

cycle v c

c

try

v c

N K L L N n n N N m m N K

n ind R N K

l
l N

N n R

= − = − −

← ← ← − −

←
<

′

… …

…

()
() ()

()

remaining degree

 6: form -tuple with randomly chosen elements

 7: evaluate the cycle distribution up to 2 caused by edge configuration

 8: if all cycles associa

c

v v

c

N m

N n N n

f L

e

c e

()

() () ()
()

ted with is larger than

 9: execute the stopping set detection

10: evaluate the metric with the number of variable nodes and the radius

11: if is bett

c cycle

s S

s

f L

f V r

f

c

c c c

c ()
() ()

()
() ()() ()()

er than *

12: update * , *

13: endif

14: endif

15: 1

16: endwhile

17: for (0; ;)

18: () , () * , * * 1

19: e

s

s s

v

c c

f

f f

l l

k k N n k

VIndex ind k n CIndex ind k k N k N k

← ←

← +

= < + +

+ ← + ← ← −

c

c c c c

c c c

()
ndfor

20: , 1

21: while ()

Output : ,

vind ind N n n n
n N
VIndex CIndex

← + ← +

<

Fig. 2. The outline of the proposed code design algorithm

random configuration of edges connecting that variable node
to Nv(n) constraint nodes is placed in the Tanner graph being
constructed. A sufficiently large number of random edge con-
figuration is examined for a short-length cycle conditioning.
We used the algorithm proposed in [4], which is very similar
to the equation (1), to evaluate the distribution of cycles with
relatively short lengths. If all cycles caused by addition of new
Nv(n) edges are larger than pre-defined cycle length, stopping
set detection is performed for such edge configurations. The
outputs of stopping set detection are the number of constituent
variable nodes and the set radius. With these two values,
a metric function for a stopping set is evaluated. We used
a weighted sum of two values for the metric function. If
new metric function is better than the currently best metric
function, the best metric function is updated and its edge
configuration is stored. After sufficiently large number of
random edge configurations, the best edge configuration is
chosen for the position of new Nv(n) edges. The same edge
placement processing is repeated until n < N .

We used the proposed algorithm to construct a simple
irregular codes of (N, K) = (800, 300) and (800, 500). The
codewords were sent through binary erasure channel (BEC)
and additive white Gaussian noise (AWGN) channel. Three
kinds of LDPC codes are designed for comparison. A girth-
conditioned code is designed by only checking whether the
girth is larger than pre-defined length. The ACE [3] is a metric
for implicit stopping set conditioning method. The correspond-
ing code is designed by placing edges which maximize the
sum of the variable node degrees contained in cycles. All
designed codes are guaranteed to remove short cycles of length
at least 6. Fig. 3 depicts the performance over BEC. The
performance over BEC distinguishes the codes designed by
the proposed method from other codes designed by existing
methods because it strictly depends on the designed code
structure. The performance over AWGN channel is plotted in
Fig. 4. The sum-product algorithm is performed with iteration
number of 50 for decoding. While the performance in the

Fig. 3.

Fig.

low SN
conditio
algorith
region.

In th
propaga
code. T
ping se
constitu
from th
design.
codes o
AWGN

[1] D. J
matr

[2] C. D
lengt
chan

[3] T. T
of ir
Com

[4] S. H
algor
and
00.10.20.30.40.50.60.70.80.91

10
−4

10
−3

10
−2

10
−1

10
0

C
od

ew
or

d
er

ro
r

pr
ob

ab
ili

ty

Erasure probability

Prop. (R=3/8,N=800)
Girth (R=3/8,N=800)
ACE (R=3/8,N=800)
Prop. (R=5/8,N=800)
Girth (R=5/8,N=800)
ACE (R=5/8,N=800)

Simulation result for designed codes over binary erasure channel.

−1 0 1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
it

er
ro

r
pr

ob
ab

ili
ty

Eb/No

Prop. BER (R=3/8,N=800)
Girth BER (R=3/8,N=800)
ACE BER (R=3/8,N=800)
Prop. BER (R=5/8,N=800)
Girth BER (R=5/8,N=800)
ACE BER (R=5/8,N=800)

4. Simulation result for designed codes over AWGN channel.

R region is similar because relatively short cycles are
ned for all codes, the code designed by the proposed
m has a performance improvement in the error floor

VI. CONCLUSION

is paper, a stopping set detection scheme using a belief-
tion algorithm was proposed for designing an LDPC
he proposed scheme can detect the existence of stop-
ts by using two-step belief-propagation algorithm. The
ent nodes of the detected stopping set are recovered
e messages and their number is used for the code
The simulation results showed that the proposed LDPC
utperforms conventional LDPC codes over BEC and
channels, especially in the error floor region.

REFERENCES

. C. MacKay, “Good error correcting codes based on very sparse
ices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.
i, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite
h analysis of low-density parity-check codes on the binary erasure
nel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1570-1579, June 2002.
ian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction
regular LDPC codes with low error floors,” Proc. IEEE Int. Conf.
m., vol. 5, pp. 3125-3129, Anchorage, AK, U.S.A., May 2003.
. Lee, K. S. Kim, Y. H. Kim, and J. Y. Ahn, “ A cycle search
ithm for an LDPC code design”, Proc. Int. Symp. Inform. Theory
Applications, Wed 2-2-5, Parma, Italy, Oct. 2004.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors

	blhs:
	pg990:
	brhs:
	pg991:
	pg992:
	pg993:
	pg994:

