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Abstract - In direction of arrival estimation, the sig- 
nal sources are usually assumed to be point sources. 
If the signal sources are dispersive, however, direc- 
tion of arrival estimation methods based on the point 
source assumption may result in poor performance. 
In this paper, we consider direction of arrival esti- 
mation under a parametric dispersive signal model- 
ing. An estimation method based on the well-known 
conditional maximum likelihood method in the para- 
metric model are considered. 

I. INTRODUCTION 

Conventional DOA estimation methods are based on the 
assumption that  the signal sources are point sources: 
i.e., if a DOA is 8, then there is no other signal a t  0 + E ,  
for a very small value of E .  It  is a reasonable assumption 
if the signal sources are located far enough from the re- 
ceivers and are not dispersive. Under this assumption 
the DOA's can be estimated using the steering vector 
which is a vector function of the DOA's. The  array out- 
put vector is a weighted sum of these vectors with the 
weighting dependent on the signal sources, and corrupt- 
ed by spatially white noise vector. 

On the other hand, if the signal sources are disper- 
sive, the array output  is not a weighted sum of the f;- 
nzte number of steerzng vectors. In addition, although 
the DOA estimation methods for point signal sources 
can be directly applied t o  the DOA estimation for dis- 
persive signal sources, we do not have confidence that  
the methods would provide us with good estimates of 
the DOA's. 

In this paper we address the parametric dispersive 
signal source modeling problem and show that  the 
conventional conditional maximum likelihood method 
with some modification can be applied to obtaining the 
UOA's of the dispersive signal sources. 

11. PARAMETRIC DISPERSIVE SIGNAL MODEL 

For M point sources, the output of a n  array with L 
elements can be written as 

M 

- 9 ( t )  = C U ( W i ) Z i ( t )  +n(t); (1) 
i= l  

where y(t) E C L x 1 ,  z ; ( t )  represents the i t h  point signal 
source, a(@) E C L x l  is the steering vector, w,  is the 
DOA of the i th  source, and n(t) E C L x 1  is the noise 
vector. Here C L x l  denotes the space of L x 1 complex- 
valued vectors. Denoting A = ~ ( w l ) , g ( w z ) ,  . . . , g ( w ~ ) ]  

- 

and ~ ( t )  = [zl(t), ~ ( t ) ,  . . . , Z M ( ~ ) ] ~ ,  

Let the dispersive signal source density be s (0 ,  t )  and 
assume that  the complex normal noise vector ~ ( t )  is 
a spatially and temporally uncorrelated random vector 
with zero-mean and covariance matrix al. Then the 
output of the array can be expressed as 

d 
where ~ ( t )  == & Jf"g(Q)s(Q, t ) d 0 .  As a special case, if 
s ( 8 , t )  = 2 w : c z 1  q ( t ) b ( Q - - w i ) ,  then we obtain (1) from 

The  signall source density s(0, t )  can be written as 
(3) ~ 

M 

(4) 
m=O 

In (4) cm(t) is a complex normal random variable 
with E[c,(t)] = 0,  E[c,(t)c;(s)] = ym,Sts ,  and 

cui(t)p"(wi? vi), 
where ai(t) is a zero-mean complex random variable 

E,"=, E,"==,, lrmn I < 03. 
M Let us assume that  c m ( t )  = 
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with covariance function E [ L Y , ( ~ ) Q ~ ( s ) ]  = umnbts, and 
p(8, p )  = pej' is defined by the dispersion parameter p,  
0 5 p < 1, and DOA 8, 0 5 6' < 27r. Since 

M 

the array output  is 

where 

\ ,  
Since Ihe covariance function of s ( Q ,  t )  is 

Cs(Q, @) = 

the covariance matr ix  R, of the output of array is 

R o  = B(B, p)ABH(B,  E) + U I ,  (9) 

where B(B,p) - = ~ ( ~ 1 , ~ 1 ) , ~ ( ~ 2 , ~ 2 ) ~ " ' ~ ~ ( ~ ~ ~ ~ ~ ) 1  E 
C L x M  is the steering matrix with e = [81,Q2, . . . , QnfjT 
and p = [ p1 ,p2 , .  . . , p ~ ] ~ ,  and [A],, = gmn.  For no- 
tational convenience, we will write B instead of B(& p) .  
Equat,ion (9) is quite similar t o  the equation of t,he co- 
variance matr ix  of the output  of array in the point mod- 
el, R, = AR,AN + u I ,  where R, = E k ( t ) g H ( t ) ] .  

a 

- 

111. DOA ESTIMATION UNDER PARAMETRIC 
DISPERSIVE SIGNAL MODEL 

In the parametric model (5), we can use the 
eigenstructure-based or maximum likelihood methods 
for DOA est,imation [1,3]. In this section we consid- 
er a DOA estimat,ion method based on the conditional 
maximum likelihood (CML) method. 

Let P s  = BIBHB]- lBH be the projection oper- 
ator onto the space spanned by the columns of B, 
P" I - P s  with I the  identity matrix, and g( t )  = 
[a l ( t ) ,  aa(t) ,  . . . , ~ y ~ ( t ) ] ~ .  From ( 6 ) )  the conditional 
log-likelihood function of the observed da ta  can be de- 
rived to be 

A 

A 

In L(Y  Ig(t)) = 

N 1 
N u  -N ln U - - C[y( t )  - BQ.(t)lH[y(t) - BQ.(t)l, 

t=l 

(10) 

where Y = [y ( l ) ,  y (2) ,  . . . , y(N)]. In CML principle, the 
problem is to maGimize (10) with respect to e ,p ,g ( t ) ,  
and U .  Let us first maximize (10) with respect to ~ ( t )  
for given B,p,  and U .  Then we obtain 

- 

- 

- a( t )  = ( B H B ) - 1 B H y ( t ) .  - (11) 

Xext, let us maximize (10) with respect t o  U .  Then we 
get; 

(12) c=- tr[PnR,], 
L - M  

N where R,  = k y(t)y"(t) is the sample covariance 
matrix. Thus,  the C M L  cost function is, from (10)-(la), 

Vc(B,p) = tI.[P"&]. (13) 

Therefore. the estimate (W%, f j z )  of (ut ,  7%)  can be ob- 
tained from 

( G j 2 . b 2 )  = a r g m a x t r [ P & ] ,  i = 1 , 2 , .  . . ,  M .  (14) 
' L , P ,  

The optimization problem can be solved with the New- 
ton [4]. alternating projection [6] , and expectation max- 
imization [2] algorithms 

IV. STATISTICAL PROPERTIES 

Under the assumption tha t  the estimate (2, i j )  is suffi- 
cientlj- close to  (E, q ) ,  t,he estimation error vector is - 

and 

From (15) and by use of the statistical results of [5], we 
can show that  the asymptotic distribution of the esti- 
mation error vector [(k - E)~, (6 - 17)T]T  is zero-mean 
normal with covariance matr ix  

- -  
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where 

and 
U 

C -- 
- 2N 

Re(h,, 0 (AWCA)*) Ee(hgT 0 (AWcA)T) [ -  R e ( h L  o ( A W ~ A ) ~ )  Re(h,, - o ( A W , A ) ~ )  

[Alij [Bli, > h,, = [& BH (w, 1711 p n  [&B(w: r)l, 
hgx = [~BH(iJ,1)1pn[~U(w,12)l, - 

h,, - = [ ~ ~ H ( i J , ~ ) l ~ ~ [ ~ U ( i J , 7 - ? ) l .  

A A 
with Wc = A-’ + gA- l (BHB)- lA- l ,  [A 0 B];j = 

A 

A 

h, = A a H  [qp (w,7-?)Pn[&q%17)I> and 
- - 

A 

Next, let us obtain the-Cramer Rao bound (CRB)  of 
the variance of the DOA estimation error vector. From 
(10) and by extending the statistical results of [ 5 ] ,  the 
asymptotic CRB is obtained as, 

U 
CRB = -. 

2N 

I - ’ .  (19) 
Re(h, 0 AT)  Re(h,, 0 AT)  [ -  Re(h,, 0 A’) Re(hyia - A’) 

V. NUMERICAL EXAMPLES 

Let us assume that  L = 5, M = 2,  and the number of 
snapshots N = 100. 
Example 1: In this example, we compare the variances 
of the estimation errors of DOA’s and dispersion param- 
eters with CRB a t  SNR = 10, 20 dB. The  comparison 
between the variance (16) and the CRB (19) of the DOA 
estimation errors is shown in Figure 1 when one signal is 
located a t  30’ with 71 = 0.99 and the DOA of the other 
source is changed with fixed 7 2  = 0.95. From Figure 1, 
we observe tha t  the difference between the variance and 
the CRB of the DOA estimation errors approaches zero 
as the difference between the two DOA’s become larger. 

Example 2: In this example, let us evaluate the relative 
efficiency defined as the ratio of the CRB t o  the variance 
of estimation error. The  relative efficiencies of the DOA 
estimation errors are shown in Figure 2(a) under the 
same environment as in Figure 1. Since the slopes in 
Figure 2(a) are larger values than those in Figure 2(b), 
we may conclude that  the DOA estimation error is more 
sensitive to  the difference of DOA than that  of dispersion 
parameter. Also, we observe that  when SNR is larger 
than 20 dB,  the variance of the DOA estimation error 
is essentially equal t o  the CRB. 

When one signal is located a t  30’ and the DOA of the 
other signal is changed, and the two dispersion param- 
eters have the same values 0.5, 0.7, 0.9, 1, the relative 

efficiency is shown in Figure 2(c). From Figure 2(c) we 
observe that, the relative efficiency increases as the dis- 
persion paradmeter increases. 

VI. CONCLUDING REMARKS 

When the signal sources are not point sources, but dis- 
persed over an area, we cannot use the well-known di- 
rection of arrival estimation methods which are based 
on the point source assumption. We consider a direc- 
tion of arrival estimation method for dispersive signal 
sources. The  dispersive signal source is modeled by the 
parametric method, and under the model we consider 
the CML-based direction of arrival estimation method. 
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Figure 1: The variance and CRB of DOA estimation errors when 
w1 = 30°, 771 = 0.99, 172 = 0.95, L = 5, N = 100, and SNR = 10,  
20 dB. 
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Figure 2(b) :  The relative efficiency of DOA estimationerrors with 
changing the two dispersion parameter difference under w1 = 30°, 
+ = 40°, 771 = 0.99, L = 5, N = 100, and SNR= 0, 10, 20 dB. 
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Figure 2(a): The relative efficiency of DOA estimation errors with 
changing the two DOA difference under w1 = 30°,  T i  = 0.99, 
772 = 0.95, L = 5, N = 100, and SNR= 0, 10, 20 dB. 

Figure 2(c): The relative efficiency of DOA estimation errors with 
changing the two DOA difference under w1 = 30°, 171 = 7 2  = 
1,0.9,0.7,0.5, L = 5, and SNR=20 dB. 
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