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Abstract - In dirvection of arrival estimation, the sig-
nal sources are usually assumed to be point sources.
If the signal sources are dispersive, however, direc-
tion of arrival estimation methods based on the point
source assumption may result in poor performance.
In this paper, we consider direction of arrival esti-
mation under a parametric dispersive signal model-
ing. An estimation method based on the well-known
conditional maximum likelihood method in the para-
metric model are considered.

I. INTRODUCTION

Conventional DOA estimation methods are based on the
assumption that the signal sources are point sources:
i.e.,if a DOA is 8, then there is no other signal at ¢ +¢,
for a very small value of €. It is a reasonable assumption
if the signal sources are located far enough from the re-
ceivers and are not dispersive. Under this assumption
the DOA’s can be estimated using the steering vector
which is a vector function of the DOA’s. The array out-
put vector 1s a weighted sum of these vectors with the
weighting dependent on the signal sources, and corrupt-
ed by spatially white noise vector.

On the other hand, if the signal sources are disper-
sive, the array output is not a weighted sum of the fi-
nite number of steering vectors. In addition, although
the DOA estimation methods for point signal sources
can be directly applied to the DOA estimation for dis-
persive signal sources, we do not have confidence that
the methods would provide us with good estimates of
the DOA’s.

In this paper we address the parametric dispersive
signal source modeling problem and show that the
conventional conditional maximum likelithood method
with some modification can be applied to obtaining the
DOA’s of the dispersive signal sources.
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II. PARAMETRIC DISPERSIVE SIGNAL MODEL

For M point sources, the output of an array with L
elements can be written as

M

Y1) = 3 a(wi)ai(t) +n(t), (1)

=1

where y(t) € CEX! z;(t) represents the ith point signal
source, a(f) € CE*! is the steering vector, w; is the
DOA of the ith source, and n(t) € CL*! is the noise
vector. Here CL*? denotes the space of L x 1 complex-
valued vectors. Denoting A = [a(w1),a(ws), ..., a{wwm)]
and z(t) = [z1(t), z2(1), ..., z2m ()7,

y(t) = Az(t) + n(t). (2)

Let the dispersive signal source density be s(f,t) and
assume that the complex normal noise vector n(t) is
a spatially and temporally uncorrelated random vector
with zero-mean and covariance matrix oI. Then the
output of the array can be expressed as

y(t) = z(t) + n(t), (3)

where z(t) = % Ozng(ﬂ)s(Q,t)déA As a special case, if
s(6,1) = 271'12?1"__1 z;(t)6(6 —w; ), then we obtain (1) from
3)-

The signal source density s(6,t) can be written as

e}

s(0,t) = Z em(t)e™Ime . (4)

m=0

In (4) ¢n(t) is a complex normal random variable
with Elc, ()] = 0, Elem(t)c(s)] = Tmnbis, and
z:::o 2:,0:() ]rm"[ < 0.

Let us assume that ¢, () = Zi‘:’__l a; ()p™ (wi, 1),
where «;(t) is a zero-mean complex random variable
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with covariance function E[am(t)af(s)] = 0mnbss, and
p(0, p) = pel? is defined by the dispersion parameter p,
0 <p<1,and DOA 0, 0 < 6 < 27. Since

s(0,t) = Z ()] (1 = plws, mi)e™3), (5)
i=1
the array output is
M 2m
ai(t) a(0)
t) = = —df t
2 ; am /0 1 — p(wi, ni)e=7* +20)
M
= D ai(t)b(ws, m) + n(t), (6)
i=1
where
N a(8)
i) = 5= ——df, i=1,....] M.
Bl ) = 2%/0 T plwimei? "
‘ , (7)
Since the covariance function of s(4,¢t) is
Cs(0, )
Z Trmnbis
m=1n=1 (1 - p(wm, Wm)e_j9)<1 - p(wﬂl nn)e~j¢)* ’
(8)
the covariance matrix R, of the output of array is
R, = B, p)ABH (¢, p) + o1, )
where B(0,p) = [b(ws,m), bws, 1), blenr, )] €

CEXM is the steering matrix with § = [91,92, o 0T

and p = [p1,p2,...,pm)T, and [A]pny = 0pmn. For no-
tational convenience, we will write B instead of B(§, p).
Equation (9) is quite similar to the equation of the co-
variance matrix of the output of array in the point mod-

el, Ry = AR; A + o1, where R, = Efz(t)z(t)].

II1. DOA ESTIMATION UNDER PARAMETRIC
DISPERSIVE SIGNAL MODEL

In the parametric model (5), we can use the
eigenstructure-based or maximum likelihood methods
for DOA estimation [1,3]. In this section we consid-
er a DOA estimation method based on the conditional

maximum likelihood (CML) method.

Let P°® a B[BHB]“lBH be the projection oper-

ator onto the space spanned by the columns of B,
P" 21— P* with I the identity matrix, and a(t) 2
[1(t), an{t), ..., anm()]T. From (6), the conditional
log-likelihood function of the observed data can be de-
rived to be

In L(Y|a(t)) =

—Nlno - — Z y(t) — Ba()]¥ [y(t) — Ba(t)],
(10)

where Y = [y(1),¥(2), ..., y(NV)]. In CML principle, the
problem is to maximize (ﬁ)) with respect to 8, p, a(t),
and ¢. Let us first maximize (10) with respect to a(t)
for given #, p, and o. Then we obtain

a(t) = (BT B)"' B y(1). (11)

Next, let us maximize (10) with respect to o. Then we
get:
1

L-M

o =

tr[P"R,), (12)

where R, = & Zivzlg(t)gH(t) is the sample covariance
matrix. Thus, the CML cost function is, from (10)-(12),

Vo(8, p) = tr[P"R,). (13)

Therefore, the estimate (w;,7;) of (w;,n;) can be ob-
tained from

(@, p;) = argmaxtr[P"R,], i=1,2,..., M. (14)

0,0

The optimization problem can be solved with the New-
ton [4], alternating projection [6], and expectation max-
imization [2] algorithms.

IV. STATISTICAL PROPERTIES

Under the assumption that the estimate (@, 7)) is suffi-
ciently close to (w,n), the estimation error vector is

r -~
li:i]g—&ﬂ@@Wﬂ%J, (15)
where 5
_Vc(‘d:n
Vi) = | & 5@l
c(_‘i ﬂ) I: %Vc(&i;ﬂ
and

(‘)_-%%vwmf (Z Vel m)”
U= 2w ) 2(EViw ) |

From (15) and by use of the statistical results of [5], we
can show that the asymptotic distribution of the esti-
mation error vector [(@ —w)”, (7 — n)”]7 is zero-mean
normal with covariance matrix

o373 e

= H 'c.H. (16)

NEE

Ce
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o Re(hyw ® AT)  Re(hyn ® AT) 17
" 7| Re(hyw © AT)  Re(hyy © AT) |7 (17)

C= 5
Re(hyw © (AW.AYT)  Re(hy, © (AW.A)T)
[ Re(hpy © (AW,A)T)  Re(hy, © (AW.A)T) ] (18)

>

AL 4 UA_l(BHB)_lA_I [AG® B]i]‘
s B, n)],

)]s
,1)], and
A
1 = [ BH(W 77)]Pn[—6’1’B 77)]

Next, Iet us obtain the Cramer Rao bound (CRB) of
the variance of the DOA estimation error vector. From
(10) and by extending the statistical results of [5], the
asymptotic CRB is obtained as,

CRB =
9N
Re(hyw ® AT) Re(hyy © AT)
Re(hye @ AT)  Re(hyy © AT)

V. NUMERICAL EXAMPLES

Let us assume that I = 5, M = 2, and the number of
snapshots N = 100.

FEzample 1: In this example, we compare the variances
of the estimation errors of DOA’s and dispersion param-
eters with CRB at SNR = 10, 20 dB. The comparison
between the variance (16) and the CRB (19) of the DOA
estimation errors is shown in Figure 1 when one signal is
located at 30° with ;1 = 0.99 and the DOA of the other
source is changed with fixed 12 = 0.95. From Figure 1,
we observe that the difference between the variance and
the C'RB of the DOA estimation errors approaches zero
as the difference between the two DOA’s become larger.

(19)

Ezample 2: In this example, let us evaluate the relative
efficiency defined as the ratio of the C RB to the variance
of estimation error. The relative efficiencies of the DOA
estimation errors are shown in Figure 2(a) under the
same environment as in Figure 1. Since the slopes in
Figure 2(a) are larger values than those in Figure 2(b),
we may conclude that the DOA estimation error is more
sensitive to the difference of DOA than that of dispersion
parameter. Also, we observe that when SNR is larger
than 20 dB, the variance of the DOA estimation error
1s essentially equal to the CRB.

When one signal is located at 30° and the DOA of the
other signal is changed, and the two dispersion param-
eters have the same values 0.5, 0.7, 0.9, 1, the relative

efficiency is shown in Figure 2(¢c). From Figure 2(c) we
observe that the relative efficiency increases as the dis-
persion parameter increases.

VI. CONCLUDING REMARKS

When the signal sources are not point sources, but dis-
persed over an area, we cannot use the well-known di-
rection of arrival estimation methods which are based
on the point source assumption. We consider a direc-
tion of arrival estimation method for dispersive signal
sources. The dispersive signal source is modeled by the
parametric method, and under the model we consider
the CML-based direction of arrival estimation method.
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Figure 1: The variance and CRB of DOA estimation errors when Figure 2(b): The relative efficiency of DOA estimation errors with

wy = 30°, n; = 0.99, n, = 0.95, L =5, N = 100, and SNR = 10, changing the two dispersion parameter difference under w; = 30°,
20 dB. wy == 40°, n1 = 0.99, L = 5, N = 100, and SNR= 0, 10, 20 dB.

CML-based method under parametric model CML-based method under parametric model
1 T + v T v T 1 .

T ™ T T T T

0.8

0.7

067 1 0.6F

05
04f e
03} 4,"’ 03k

0.2r

relative efficiency of DOA estimation errors
o
B in
T
L
relative efficiency of IDOA estimation errors

01y e 1 01

difference of DOA difference of DOA

Figure 2(a): The relative efficiency of DOA estimation errors with Figure 2(c): The relative efficiency of DOA estimation errors with
changing the two DOA difference under w; = 30°, m = 0.99, changing the two DOA difference under w; = 30°, 3 = 7, =
e = 0.95, L = 5, N = 100, and SNR= 0, 10, 20 dB. 1,0.9,0.7,0.5, L = 5, and SNR=20 dB.
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